mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.8 KiB
169 lines
5.8 KiB
# This test checks adam kernels
|
|
# Baseline is pure fp32 torch adam optimizer
|
|
import math
|
|
from abc import abstractmethod
|
|
from typing import Type
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
from colossalai.utils import get_current_device, multi_tensor_applier
|
|
|
|
_FUSED_ALLOWED_P_G_TYPES = [
|
|
(torch.float, torch.half),
|
|
(torch.float, torch.float),
|
|
(torch.half, torch.half),
|
|
(torch.float, torch.bfloat16),
|
|
(torch.bfloat16, torch.bfloat16),
|
|
]
|
|
|
|
_CPU_ALLOWED_P_G_TYPES = [
|
|
(torch.float, torch.half),
|
|
(torch.float, torch.float),
|
|
(torch.half, torch.half),
|
|
]
|
|
|
|
|
|
class AdamKernel:
|
|
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
|
|
self.lr = lr
|
|
self.beta1 = beta1
|
|
self.beta2 = beta2
|
|
self.eps = eps
|
|
self.weight_decay = weight_decay
|
|
self.use_adamw = use_adamw
|
|
|
|
@abstractmethod
|
|
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
|
|
pass
|
|
|
|
|
|
class TorchAdamKernel(AdamKernel):
|
|
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
|
|
bias_correction1 = 1 - self.beta1**step
|
|
bias_correction2 = 1 - self.beta2**step
|
|
|
|
if self.weight_decay != 0:
|
|
if self.use_adamw:
|
|
# Perform stepweight decay
|
|
param.mul_(1 - self.lr * self.weight_decay)
|
|
else:
|
|
grad = grad.add(param, alpha=self.weight_decay)
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(self.beta1).add_(grad, alpha=1 - self.beta1)
|
|
exp_avg_sq.mul_(self.beta2).addcmul_(grad, grad, value=1 - self.beta2)
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(self.eps)
|
|
|
|
step_size = self.lr / bias_correction1
|
|
|
|
param.addcdiv_(exp_avg, denom, value=-step_size)
|
|
|
|
|
|
class FusedAdamKernel(AdamKernel):
|
|
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
|
|
super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw)
|
|
from colossalai.kernel.op_builder import FusedOptimBuilder
|
|
|
|
fused_optim = FusedOptimBuilder().load()
|
|
self.fused_adam = fused_optim.multi_tensor_adam
|
|
self.dummy_overflow_buf = torch.cuda.IntTensor([0])
|
|
|
|
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
|
|
multi_tensor_applier(
|
|
self.fused_adam,
|
|
self.dummy_overflow_buf,
|
|
[[grad], [param], [exp_avg], [exp_avg_sq]],
|
|
self.lr,
|
|
self.beta1,
|
|
self.beta2,
|
|
self.eps,
|
|
step,
|
|
self.use_adamw,
|
|
True,
|
|
self.weight_decay,
|
|
-1,
|
|
)
|
|
|
|
|
|
class CPUAdamKernel(AdamKernel):
|
|
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
|
|
super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw)
|
|
from colossalai.kernel import CPUAdamLoader
|
|
|
|
cpu_optim = CPUAdamLoader().load()
|
|
|
|
self.cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, use_adamw)
|
|
|
|
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
|
|
self.cpu_adam_op.step(
|
|
step,
|
|
self.lr,
|
|
self.beta1,
|
|
self.beta2,
|
|
self.eps,
|
|
self.weight_decay,
|
|
True,
|
|
param.view(-1),
|
|
grad.view(-1),
|
|
exp_avg.view(-1),
|
|
exp_avg_sq.view(-1),
|
|
-1,
|
|
)
|
|
|
|
|
|
def check_adam_kernel(
|
|
kernel: Type[AdamKernel],
|
|
adamw: bool,
|
|
weight_decay: float,
|
|
p_dtype: torch.dtype,
|
|
g_dtype: torch.dtype,
|
|
device: torch.device,
|
|
n_steps: int,
|
|
rtol: float,
|
|
atol: float,
|
|
):
|
|
lr = 1e-3
|
|
beta1, beta2 = 0.9, 0.999
|
|
eps = 1e-8
|
|
torch_adam = TorchAdamKernel(lr, beta1, beta2, eps, weight_decay, adamw)
|
|
adam_kernel = kernel(lr, beta1, beta2, eps, weight_decay, adamw)
|
|
master_p = torch.rand(64, device=device)
|
|
master_g = torch.rand_like(master_p)
|
|
master_exp_avg = torch.zeros_like(master_p)
|
|
master_exp_avg_sq = torch.zeros_like(master_p)
|
|
p = master_p.clone().to(p_dtype)
|
|
g = master_g.clone().to(g_dtype)
|
|
exp_avg = master_exp_avg.clone().to(p_dtype)
|
|
exp_avg_sq = master_exp_avg_sq.clone().to(p_dtype)
|
|
|
|
for step in range(1, 1 + n_steps):
|
|
torch_adam.update(step, master_p, master_g, master_exp_avg, master_exp_avg_sq)
|
|
adam_kernel.update(step, p, g, exp_avg, exp_avg_sq)
|
|
# if overflow, the weight won't be updated. so there will be no nan in p
|
|
assert not torch.isnan(p).any()
|
|
assert torch.allclose(master_p, p.float(), rtol=rtol, atol=atol)
|
|
|
|
|
|
@pytest.mark.parametrize("adamw", [False, True])
|
|
@pytest.mark.parametrize("weight_decay", [0.0, 0.1])
|
|
@pytest.mark.parametrize("p_dtype, g_dtype", _FUSED_ALLOWED_P_G_TYPES)
|
|
def test_fused_adam_kernel(adamw, weight_decay, p_dtype, g_dtype):
|
|
rtol, atol = 1e-5, 1e-8
|
|
if p_dtype is torch.float16 or g_dtype is torch.float16:
|
|
rtol, atol = 1e-3, 1e-3
|
|
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
|
|
rtol, atol = 4e-3, 4e-3
|
|
check_adam_kernel(FusedAdamKernel, adamw, weight_decay, p_dtype, g_dtype, get_current_device(), 3, rtol, atol)
|
|
|
|
|
|
@pytest.mark.parametrize("adamw", [False, True])
|
|
@pytest.mark.parametrize("weight_decay", [0.0, 0.1])
|
|
@pytest.mark.parametrize("p_dtype, g_dtype", _CPU_ALLOWED_P_G_TYPES)
|
|
def test_cpu_adam_kernel(adamw, weight_decay, p_dtype, g_dtype):
|
|
rtol, atol = 1e-5, 1e-8
|
|
if p_dtype is torch.float16 or g_dtype is torch.float16:
|
|
rtol, atol = 1e-3, 1e-3
|
|
check_adam_kernel(CPUAdamKernel, adamw, weight_decay, p_dtype, g_dtype, torch.device("cpu"), 3, rtol, atol)
|