You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/kernel/jit/option.py

81 lines
3.3 KiB

import torch
from colossalai.legacy.nn.layer.colossalai_layer import Embedding, Linear
from colossalai.utils import get_current_device
from .bias_dropout_add import bias_dropout_add_fused_train
from .bias_gelu import bias_gelu_impl
JIT_OPTIONS_SET = False
def set_jit_fusion_options():
"""Set PyTorch JIT layer fusion options."""
# LSG: the latest pytorch and CUDA versions may not support
# the following jit settings
global JIT_OPTIONS_SET
if JIT_OPTIONS_SET == False:
# flags required to enable jit fusion kernels
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10):
# nvfuser
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(True)
torch._C._debug_set_autodiff_subgraph_inlining(False)
else:
# legacy pytorch fuser
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
JIT_OPTIONS_SET = True
def warmup_jit_fusion(
batch_size: int,
hidden_size: int,
seq_length: int = 512,
vocab_size: int = 32768,
dtype: torch.dtype = torch.float32,
):
"""Compile JIT functions before the main training steps"""
embed = Embedding(vocab_size, hidden_size).to(get_current_device())
linear_1 = Linear(hidden_size, hidden_size * 4, skip_bias_add=True).to(get_current_device())
linear_2 = Linear(hidden_size * 4, hidden_size, skip_bias_add=True).to(get_current_device())
x = torch.randint(vocab_size, (batch_size, seq_length), dtype=torch.long, device=get_current_device())
x = embed(x)
y, y_bias = linear_1(x)
z, z_bias = linear_2(y)
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for bias_grad, input_grad in zip([True, True], [False, True]):
for _ in range(10):
bias = torch.rand_like(y_bias, dtype=dtype, device=get_current_device())
input_ = torch.rand_like(y, dtype=dtype, device=get_current_device())
bias.requires_grad, input_.requires_grad = bias_grad, input_grad
bias_gelu_impl(input_, bias)
# Warmup fused bias+dropout+add
dropout_rate = 0.1
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
for _ in range(10):
input_ = torch.rand_like(z, dtype=dtype, device=get_current_device())
residual = torch.rand_like(x, dtype=dtype, device=get_current_device())
bias = torch.rand_like(z_bias, dtype=dtype, device=get_current_device())
input_.requires_grad = input_grad
bias.requires_grad = bias_grad
residual.requires_grad = residual_grad
bias_dropout_add_fused_train(input_, bias, residual, dropout_rate)
torch.cuda.empty_cache()