ColossalAI/colossalai/zero/legacy/__init__.py

46 lines
1.5 KiB
Python

from typing import Tuple
import torch
import torch.nn as nn
from colossalai.logging import get_dist_logger
from .init_ctx import ZeroInitContext, no_shard_zero_context, no_shard_zero_decrator
from .shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from .sharded_model import ShardedModelV2
from .sharded_optim import ShardedOptimizerV2
def convert_to_zero_v2(model: nn.Module, optimizer: torch.optim.Optimizer, model_config,
optimizer_config) -> Tuple[ShardedModelV2, ShardedOptimizerV2]:
"""
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
:param model: Your model object
:type model: :class:`torch.nn.Module`
:param optimizer_config: Your optimizer object
:type optimizer_config: :class:`dict`
:return: (model, optimizer)
:rtype: Tuple
"""
logger = get_dist_logger('convert_to_zero_v2')
logger.info(f'optimizer_config is {optimizer_config}', ranks=[0])
if optimizer_config is None:
optimizer_config = dict()
logger.info(f'model_config is {model_config}', ranks=[0])
if model_config is None:
model_config = dict()
zero_model = ShardedModelV2(model, **model_config)
zero_optimizer = ShardedOptimizerV2(zero_model, optimizer, **optimizer_config)
return zero_model, zero_optimizer
__all__ = [
'convert_to_zero_v2', 'ShardedModelV2', 'ShardedOptimizerV2', 'ZeroInitContext', 'no_shard_zero_context',
'no_shard_zero_decrator', 'TensorShardStrategy', 'BucketTensorShardStrategy'
]