mirror of https://github.com/hpcaitech/ColossalAI
34 lines
1.3 KiB
Python
34 lines
1.3 KiB
Python
from typing import Tuple
|
|
import torch
|
|
from ..registry import meta_profiler_function
|
|
|
|
# TODO: different activation has different FLOPs count, currently unused.
|
|
_multiplier = {
|
|
torch.nn.functional.relu: 1,
|
|
torch.nn.functional.prelu: 4,
|
|
torch.nn.functional.sigmoid: 4,
|
|
torch.nn.functional.tanh: 5,
|
|
torch.nn.functional.leaky_relu: 3,
|
|
torch.nn.functional.elu: 4,
|
|
torch.nn.functional.relu6: 2,
|
|
torch.nn.functional.gelu: 9,
|
|
torch.nn.functional.hardswish: 5,
|
|
torch.nn.functional.hardsigmoid: 4,
|
|
}
|
|
|
|
|
|
@meta_profiler_function.register(torch.nn.functional.leaky_relu)
|
|
@meta_profiler_function.register(torch.nn.functional.elu)
|
|
@meta_profiler_function.register(torch.nn.functional.gelu)
|
|
@meta_profiler_function.register(torch.nn.functional.relu6)
|
|
@meta_profiler_function.register(torch.nn.functional.prelu)
|
|
@meta_profiler_function.register(torch.nn.functional.relu)
|
|
@meta_profiler_function.register(torch.nn.functional.sigmoid)
|
|
@meta_profiler_function.register(torch.nn.functional.tanh)
|
|
@meta_profiler_function.register(torch.nn.functional.hardswish)
|
|
@meta_profiler_function.register(torch.nn.functional.hardsigmoid)
|
|
def torch_nn_func_non_linear_act(input: torch.Tensor, inplace: bool = False) -> Tuple[int, int]:
|
|
flops = input.numel()
|
|
macs = 0
|
|
return flops, macs
|