ColossalAI/colossalai/context/random/_helper.py

173 lines
5.0 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import functools
from contextlib import contextmanager
import torch.cuda
from torch import Tensor
from .seed_manager import SeedManager
from ..parallel_mode import ParallelMode
_SEED_MANAGER = SeedManager()
def get_seeds():
"""Returns the seeds of the seed manager.
Returns:
dict: The seeds of the seed manager.
"""
return _SEED_MANAGER.seeds
def get_states(copy=False):
"""Returns the seed states of the seed manager.
Returns:
dict: The seed states of the seed manager.
"""
states = _SEED_MANAGER.seed_states
if copy:
new_states = dict()
for parallel_mode, state in states.items():
new_states[parallel_mode] = state.clone()
return new_states
else:
return _SEED_MANAGER.seed_states
def get_current_mode():
"""Returns the current mode of the seed manager.
Returns:
:class:`torch.ByteTensor`: The current mode of the seed manager.
"""
return _SEED_MANAGER.current_mode
def add_seed(parallel_mode: ParallelMode, seed: int, overwrite: bool = False):
"""Adds a seed to the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
seed (int): The seed to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of
:class:`colossalai.context.ParallelMode` or the seed for `parallel_mode` has been added.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
_SEED_MANAGER.add_seed(parallel_mode, seed, overwrite)
def set_mode(parallel_mode: ParallelMode):
"""Sets the current mode of the seed manager.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
_SEED_MANAGER.set_mode(parallel_mode)
def set_seed_states(parallel_mode: ParallelMode, state: Tensor):
"""Sets the state of the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
state (:class:`torch.Tensor`): the state to be set.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not found in the seed manager.
"""
_SEED_MANAGER.set_state(parallel_mode, state)
def sync_states():
current_mode = get_current_mode()
current_states = torch.cuda.get_rng_state()
set_seed_states(current_mode, current_states)
@contextmanager
def seed(parallel_mode: ParallelMode):
""" A context for seed switch
Examples:
>>> with seed(ParallelMode.DATA):
>>> output = F.dropout(input)
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
try:
# set to new mode
current_mode = _SEED_MANAGER.current_mode
yield _SEED_MANAGER.set_mode(parallel_mode)
finally:
# recover
_SEED_MANAGER.set_mode(current_mode)
def with_seed(func, parallel_mode: ParallelMode):
"""
A function wrapper which executes the function with a specified seed.
Examples:
>>> # use with decorator
>>> @with_seed(ParallelMode.DATA)
>>> def forward(input):
>>> return F.dropout(input)
>>> out = forward(input)
>>> # OR use it inline
>>> def forward(input):
>>> return F.dropout(input)
>>> wrapper_forward = with_seed(forward, ParallelMode.DATA)
>>> out = wrapped_forward(input)
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
# switch mode
current_mode = _SEED_MANAGER.current_mode
_SEED_MANAGER.set_mode(parallel_mode)
# exec func
out = func(*args, **kwargs)
# recover state
_SEED_MANAGER.set_mode(current_mode)
return out
return wrapper
def moe_set_seed(seed):
if torch.cuda.is_available():
from colossalai.core import global_context as gpc
global_rank = gpc.get_global_rank()
diff_seed = seed + global_rank
add_seed(ParallelMode.TENSOR, diff_seed, True)
print(f"moe seed condition: {global_rank} with tensor seed {diff_seed}", flush=True)
def reset_seeds():
_SEED_MANAGER.reset()