Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

36 lines
1.2 KiB

import os
from .builder import Builder, get_cuda_cc_flag
class ScaledSoftmaxBuilder(Builder):
def __init__(self):
self.base_dir = "colossalai/kernel/cuda_native/csrc"
self.name = 'scaled_upper_triang_masked_softmax'
super().__init__()
def include_dirs(self):
ret = []
ret = [os.path.join(self.base_dir, "includes"), self.get_cuda_home_include()]
ret.append(os.path.join(self.base_dir, "kernels", "include"))
return [self.colossalai_src_path(path) for path in ret]
def sources_files(self):
ret = [
os.path.join(self.base_dir, fname)
for fname in ['scaled_upper_triang_masked_softmax.cpp', 'scaled_upper_triang_masked_softmax_cuda.cu']
]
return [self.colossalai_src_path(path) for path in ret]
def cxx_flags(self):
return ['-O3']
def nvcc_flags(self):
extra_cuda_flags = [
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr',
'--expt-extended-lambda'
]
extra_cuda_flags.extend(get_cuda_cc_flag())
ret = ['-O3', '--use_fast_math'] + extra_cuda_flags
return ret