Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

35 lines
1.2 KiB

import os
from .builder import Builder, get_cuda_cc_flag
class FusedOptimBuilder(Builder):
NAME = 'fused_optim'
BASE_DIR = "colossalai/kernel/cuda_native/csrc"
def __init__(self):
self.name = FusedOptimBuilder.NAME
super().__init__()
self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5']
def sources_files(self):
ret = [
self.colossalai_src_path(os.path.join(FusedOptimBuilder.BASE_DIR, fname)) for fname in [
'colossal_C_frontend.cpp', 'multi_tensor_sgd_kernel.cu', 'multi_tensor_scale_kernel.cu',
'multi_tensor_adam.cu', 'multi_tensor_l2norm_kernel.cu', 'multi_tensor_lamb.cu'
]
]
return ret
def include_dirs(self):
ret = [os.path.join(FusedOptimBuilder.BASE_DIR, "includes"), self.get_cuda_home_include()]
return [self.colossalai_src_path(path) for path in ret]
def cxx_flags(self):
extra_cxx_flags = []
return ['-O3'] + self.version_dependent_macros + extra_cxx_flags
def nvcc_flags(self):
extra_cuda_flags = ['-lineinfo']
extra_cuda_flags.extend(get_cuda_cc_flag())
return ['-O3', '--use_fast_math'] + extra_cuda_flags