mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
266 lines
11 KiB
266 lines
11 KiB
from collections import OrderedDict |
|
from itertools import chain |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from colossalai.context.parallel_mode import ParallelMode |
|
from colossalai.core import global_context as gpc |
|
from colossalai.constants import IS_TENSOR_PARALLEL |
|
try: |
|
from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX |
|
except ImportError: |
|
_EXTRA_STATE_KEY_SUFFIX = '_extra_state' |
|
|
|
from .common import is_using_pp |
|
|
|
__all__ = ["save_checkpoint", "load_checkpoint"] |
|
|
|
|
|
def broadcast_state_dict(state_dict, parallel_mode): |
|
state_dict = [state_dict.copy() if isinstance(state_dict, dict) else state_dict] |
|
src_rank = gpc.get_ranks_in_group(parallel_mode)[0] |
|
dist.broadcast_object_list(state_dict, src=src_rank, group=gpc.get_cpu_group(parallel_mode)) |
|
return state_dict[0] |
|
|
|
|
|
def partition_tensor_parallel_state_dict(state_dict: OrderedDict, |
|
parallel_mode: ParallelMode, |
|
dims: dict = dict(), |
|
partition_states: dict = dict()): |
|
src_rank = gpc.get_ranks_in_group(parallel_mode)[0] |
|
depth = gpc.get_world_size(parallel_mode) |
|
group = gpc.get_cpu_group(parallel_mode) |
|
is_rank0 = gpc.get_local_rank(parallel_mode) == 0 |
|
partition_info = [None] |
|
if is_rank0: |
|
partition_info_dict = OrderedDict() |
|
for key, param in state_dict.items(): |
|
dim = dims[key] |
|
is_partitioned = partition_states[key] |
|
shape = list(param.shape) |
|
if is_partitioned: |
|
shape[dim] = shape[dim] // depth |
|
partition_info_dict[key] = (is_partitioned, param.dtype, shape, dim) |
|
partition_info[0] = partition_info_dict |
|
dist.broadcast_object_list(partition_info, src_rank, group=group) |
|
partitioned_state = OrderedDict() |
|
for key, (is_partitioned, dtype, shape, dim) in partition_info[0].items(): |
|
if is_partitioned: |
|
output = torch.empty(shape, dtype=dtype) |
|
if is_rank0: |
|
scatter_list = [t.contiguous() for t in state_dict[key].chunk(depth, dim)] |
|
else: |
|
scatter_list = None |
|
dist.scatter(output, scatter_list, src_rank, group=group) |
|
else: |
|
if is_rank0: |
|
output = state_dict[key] |
|
else: |
|
output = torch.empty(shape, dtype=dtype) |
|
dist.broadcast(output, src_rank, group=group) |
|
partitioned_state[key] = output |
|
return partitioned_state |
|
|
|
|
|
def gather_tensor_parallel_state_dict( |
|
state_dict: OrderedDict, |
|
parallel_mode: ParallelMode, |
|
dims: dict = dict(), |
|
partition_states: dict = dict(), |
|
keep_vars: bool = False, |
|
): |
|
dst_rank = gpc.get_ranks_in_group(parallel_mode)[0] |
|
depth = gpc.get_world_size(parallel_mode) |
|
|
|
for key in list(state_dict.keys()): |
|
param = state_dict.pop(key) |
|
param = param if keep_vars else param.detach() |
|
dim = dims.get(key, 0) |
|
do_partition = partition_states.get(key, True) |
|
if do_partition: |
|
temp = param.transpose(0, dim).contiguous() |
|
gather_list = None |
|
if gpc.get_local_rank(parallel_mode) == 0: |
|
shape = list(param.shape) |
|
shape[0], shape[dim] = shape[dim], shape[0] |
|
shape[0] *= depth |
|
param = torch.empty(shape, dtype=param.dtype, device=param.device) |
|
gather_list = list(torch.chunk(param, depth, dim=0)) |
|
dist.gather(temp, gather_list, dst=dst_rank, group=gpc.get_cpu_group(parallel_mode)) |
|
param = torch.transpose(param, 0, dim) |
|
# update params in state_dict only on local rank 0 |
|
if gpc.get_local_rank(parallel_mode) == 0: |
|
state_dict[key] = param |
|
|
|
return state_dict |
|
|
|
|
|
def _send_state_dict(state_dict, dst, parallel_mode): |
|
state_tensor, state_size = dist.distributed_c10d._object_to_tensor(state_dict) |
|
dist.send(state_size, dst, group=gpc.get_cpu_group(parallel_mode)) |
|
dist.send(state_tensor, dst, group=gpc.get_cpu_group(parallel_mode)) |
|
|
|
|
|
def _recv_state_dict(src, parallel_mode): |
|
state_size = torch.tensor([0], dtype=torch.long) |
|
dist.recv(state_size, src, group=gpc.get_cpu_group(parallel_mode)) |
|
state_tensor = torch.empty(state_size.item(), dtype=torch.uint8) |
|
dist.recv(state_tensor, src, group=gpc.get_cpu_group(parallel_mode)) |
|
state_dict = dist.distributed_c10d._tensor_to_object(state_tensor, state_size) |
|
return state_dict |
|
|
|
|
|
def partition_pipeline_parallel_state_dict(model, state_dict): |
|
pipeline_state = OrderedDict() |
|
|
|
if gpc.get_local_rank(ParallelMode.TENSOR) == 0: |
|
# receive all states from prev stage |
|
if not gpc.is_first_rank(ParallelMode.PIPELINE): |
|
state_dict = _recv_state_dict(gpc.get_prev_global_rank(ParallelMode.PIPELINE), ParallelMode.PIPELINE) |
|
# move states to output |
|
for name, _ in model.named_parameters(recurse=True): |
|
if name in state_dict: |
|
pipeline_state[name] = state_dict.pop(name) |
|
for name, _ in model.named_buffers(recurse=True): |
|
if name in state_dict: |
|
pipeline_state[name] = state_dict.pop(name) |
|
for name, _ in model.named_modules(): |
|
extra_state_key = name + "." + _EXTRA_STATE_KEY_SUFFIX |
|
if extra_state_key in state_dict: |
|
pipeline_state[extra_state_key] = state_dict.pop(extra_state_key) |
|
# send rest states to next stage |
|
if not gpc.is_last_rank(ParallelMode.PIPELINE): |
|
_send_state_dict(state_dict, gpc.get_next_global_rank(ParallelMode.PIPELINE), ParallelMode.PIPELINE) |
|
|
|
return pipeline_state |
|
|
|
|
|
def gather_pipeline_parallel_state_dict(state_dict): |
|
gathered_states = ([None for _ in range(gpc.get_world_size(ParallelMode.PIPELINE))] |
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0 else None) |
|
dist.gather_object( |
|
state_dict, |
|
gathered_states, |
|
dst=gpc.get_ranks_in_group(ParallelMode.PIPELINE)[0], |
|
group=gpc.get_cpu_group(ParallelMode.PIPELINE), |
|
) |
|
|
|
state_dict = (OrderedDict(chain.from_iterable(state.items() for state in gathered_states)) |
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0 else OrderedDict()) |
|
|
|
return state_dict |
|
|
|
|
|
def save_checkpoint(file, |
|
epoch: int, |
|
model: torch.nn.Module, |
|
optimizer: torch.optim.Optimizer = None, |
|
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, |
|
**kwargs): |
|
"""Stores the checkpoint to disk. Saves all the training components' parameters or buffers, such as model, optimizer, |
|
lr_scheduler etc. into a checkpoint dictionary. |
|
|
|
Args: |
|
file: a file-like object (has to implement write and flush) or a string or os.PathLike object containing a |
|
file name. |
|
epoch (int): Epoch number (indicates how many epochs have you trained this model). |
|
model (:class:`torch.nn.Module`): Model to be saved. |
|
optimizer (Union[:class:`torch.optim.Optimizer`, :class:`colossalai.nn.optimizer`]): Optimizer to be saved. |
|
lr_scheduler (Union[:class:`torch.optim.lr_scheduler`, :class:`colossalai.nn.lr_scheduler`], optional): |
|
lr_scheduler to be saved, defaults to None. |
|
pickle_module: module used for pickling metadata and objects |
|
pickle_protocol: can be specified to override the default protocol |
|
""" |
|
# ckpt container |
|
checkpoint = {"epoch": epoch} |
|
|
|
model_state = model.state_dict() |
|
if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0: |
|
model_state = gather_pipeline_parallel_state_dict(model_state) |
|
|
|
if gpc.get_global_rank() == 0: |
|
checkpoint["model"] = model_state |
|
|
|
# if optimizer is not None: |
|
# checkpoint['optimizer'] = optimizer.state_dict() |
|
|
|
# if lr_scheduler is not None: |
|
# checkpoint['lr_scheduler'] = lr_scheduler.state_dict() |
|
|
|
torch.save(checkpoint, file, **kwargs) |
|
|
|
|
|
def broadcast_model(model: torch.nn.Module): |
|
src_rank = gpc.get_ranks_in_group(ParallelMode.TENSOR)[0] |
|
for p in model.parameters(): |
|
if not getattr(p, IS_TENSOR_PARALLEL, False) and p.storage().size() > 0: |
|
group = gpc.get_group(ParallelMode.TENSOR) if p.device.type == 'cuda' else gpc.get_cpu_group( |
|
ParallelMode.TENSOR) |
|
dist.broadcast(p, src_rank, group=group) |
|
|
|
|
|
def load_checkpoint( |
|
file, |
|
model: torch.nn.Module, |
|
optimizer: torch.optim.Optimizer = None, |
|
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, |
|
strict: bool = True, |
|
): |
|
"""Loads training states from a checkpoint file. |
|
|
|
Args: |
|
file: a file-like object (has to implement read(), readline(), tell(), and seek()), or a string or os.PathLike |
|
object containing a file name. |
|
model (:class:`torch.nn.Module`): Model to load saved weights and buffers. |
|
optimizer (Union[:class:`torch.optim.Optimizer`, :class:`colossalai.nn.optimizer`]): Optimizer to recuperate. |
|
lr_scheduler (:class:`torch.optim.lr_scheduler._LRScheduler`, optional): |
|
lr_scheduler to recuperate, defaults to None. |
|
strict (bool, optional): Whether to strictly enforce that the keys in :attr:`state_dict` |
|
of the checkpoint match the names of parameters and buffers in model, defaults to True. |
|
|
|
Returns: |
|
int: The saved epoch number. |
|
|
|
Raises: |
|
RuntimeError: Raise error if the model/optimizer cannot successfully be recuperated |
|
""" |
|
state_dict = (torch.load(file, map_location=torch.device("cpu")) |
|
if gpc.get_local_rank(ParallelMode.MODEL) == 0 else None) |
|
|
|
# model states |
|
model_state = state_dict.pop("model") if state_dict is not None else dict() |
|
# pipeline |
|
if is_using_pp(): |
|
model_state = partition_pipeline_parallel_state_dict(model, model_state) |
|
try: |
|
model.load_state_dict(model_state, strict=strict) |
|
broadcast_model(model) |
|
except RuntimeError as e: |
|
error_msgs = str(e) |
|
if error_msgs.startswith("Error(s) in loading state_dict for "): |
|
error_msgs = error_msgs.split("\n\t")[1:] |
|
dst_rank = gpc.get_ranks_in_group(ParallelMode.MODEL)[0] |
|
all_error_msgs = [None for _ in range(gpc.get_world_size(ParallelMode.MODEL))] |
|
dist.gather_object(error_msgs, all_error_msgs, dst=dst_rank, group=gpc.get_cpu_group(ParallelMode.MODEL)) |
|
if gpc.get_global_rank() == 0: |
|
all_error_msgs = list(chain.from_iterable(all_error_msgs)) |
|
raise RuntimeError("Error(s) in loading state_dict for {}:\n\t{}".format( |
|
model.__class__.__name__, "\n\t".join(all_error_msgs))) |
|
else: |
|
raise e |
|
|
|
# broadcast the rest states |
|
state_dict = broadcast_state_dict(state_dict, ParallelMode.MODEL) |
|
|
|
# # optimizer states |
|
# if optimizer is not None and 'optimizer' in state_dict: |
|
# optimizer.load_state_dict(state_dict['optimizer']) |
|
|
|
# # lr scheduler states |
|
# if lr_scheduler is not None and 'lr_scheduler' in state_dict: |
|
# lr_scheduler.load_state_dict(state_dict['lr_scheduler']) |
|
|
|
# last epoch |
|
last_epoch = state_dict.pop("epoch", -1) |
|
|
|
return last_epoch
|
|
|