ColossalAI/tests/test_shardformer/test_model/_utils.py

334 lines
12 KiB
Python

import copy
import math
from contextlib import nullcontext
from typing import Any, Callable, Dict, List, Optional
import torch
import torch.distributed as dist
from torch import Tensor
from torch import distributed as dist
from torch.distributed import ProcessGroup
from torch.nn import Module
from torch.optim import Adam, Optimizer
from torch.testing import assert_close
from colossalai.booster import Booster
from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
from colossalai.lazy import LazyInitContext
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.shardformer._utils import getattr_
from colossalai.shardformer.policies.auto_policy import Policy
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
def build_model(
model_fn,
enable_fused_normalization=True,
enable_tensor_parallelism=True,
enable_flash_attention=False,
enable_jit_fused=False,
enable_sequence_parallelism=False,
use_lazy_init: bool = False,
):
# create new model
ctx = LazyInitContext() if use_lazy_init else nullcontext()
with ctx:
# create new model
org_model = model_fn()
model_copy = copy.deepcopy(org_model)
if use_lazy_init:
ctx.materialize(org_model)
# shard model
shard_config = ShardConfig(
enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism,
enable_flash_attention=enable_flash_attention,
enable_jit_fused=enable_jit_fused,
enable_sequence_parallelism=enable_sequence_parallelism,
)
model_copy = copy.deepcopy(org_model)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy)
return org_model.cuda(), sharded_model.cuda()
def build_pipeline_model(
model_fn,
stage_manager=None,
enable_fused_normalization=False,
enable_tensor_parallelism=False,
use_lazy_init: bool = False,
policy: Optional[Policy] = None,
):
ctx = LazyInitContext() if use_lazy_init else nullcontext()
with ctx:
# create new model
org_model = model_fn()
model_copy = copy.deepcopy(org_model)
if use_lazy_init:
ctx.materialize(org_model)
# shard model
shard_config = ShardConfig(
enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism,
pipeline_stage_manager=stage_manager,
)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy, policy=policy)
return org_model.cuda(), sharded_model.cuda()
def run_forward(original_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
# prepare input
data = data_gen_fn()
data = {k: v.cuda() for k, v in data.items()}
# switch to train mode
original_model.train()
sharded_model.train()
# run forward
org_output = original_model(**data)
org_output = output_transform_fn(org_output)
org_loss = loss_fn(org_output)
shard_output = sharded_model(**data)
shard_output = output_transform_fn(shard_output)
shard_loss = loss_fn(shard_output)
return org_output, org_loss, shard_output, shard_loss
def check_state_dict(org_model: Module, sharded_model: Module, name: str = ""):
org_sd = org_model.state_dict()
shard_sd = sharded_model.state_dict()
for k, v in org_sd.items():
assert k in shard_sd, f"{name} {k} not in sharded model"
shard_v = shard_sd[k]
assert v.shape == shard_v.shape, f"{name} {k} shape mismatch, {v.shape} vs {shard_v.shape}"
assert v.dtype == shard_v.dtype, f"{name} {k} dtype mismatch, {v.dtype} vs {shard_v.dtype}"
assert torch.equal(v, shard_v), f"{name} {k} value mismatch"
def build_model_from_hybrid_plugin(model_fn: Callable, loss_fn: Callable, test_config: Dict[str, Any]):
use_lazy_init = False
if "use_lazy_init" in test_config:
use_lazy_init = test_config.pop("use_lazy_init")
ctx = LazyInitContext() if use_lazy_init else nullcontext()
with ctx:
org_model = model_fn()
sharded_model = copy.deepcopy(org_model)
if use_lazy_init:
ctx.materialize(org_model)
org_model = org_model.cuda()
org_optimizer = Adam(org_model.parameters(), lr=1e-3)
sharded_optimizer = Adam(sharded_model.parameters(), lr=1e-3)
criterion = loss_fn
plugin = HybridParallelPlugin(**test_config)
booster = Booster(plugin=plugin)
sharded_model, sharded_optimizer, criterion, _, _ = booster.boost(sharded_model, sharded_optimizer, criterion)
return org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster
def run_forward_backward_with_hybrid_plugin(
org_model: Module,
sharded_model: Module,
sharded_optimizer: Optimizer,
data_gen_fn: Callable,
output_transform_fn: Callable,
criterion: Callable,
booster: Booster,
):
org_model.cuda()
sharded_model.cuda()
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
data = data_gen_fn()
if booster.plugin.enable_sequence_parallelism and booster.plugin.tp_size != 0:
seq_len = data["input_ids"].shape[-1]
lcm = booster.plugin.tp_size * seq_len // math.gcd(booster.plugin.tp_size, seq_len)
times = lcm // seq_len
input_shape = data["input_ids"].shape
for k, v in data.items():
if v.shape == input_shape:
data[k] = v.repeat((1,) * (v.dim() - 1) + (times,))
sharded_model.train()
if booster.plugin.stage_manager is not None:
for k, v in data.items():
if torch.is_tensor(v) or "Tensor" in v.__class__.__name__:
new_shape = [1] * v.dim()
new_shape[0] = 4
data[k] = v.to("cuda").repeat(*new_shape)
data_iter = iter([data])
sharded_output = booster.execute_pipeline(
data_iter, sharded_model, _criterion, sharded_optimizer, return_loss=True, return_outputs=True
)
sharded_loss = sharded_output["loss"]
else:
data = {k: v.cuda() for k, v in data.items()}
sharded_output = sharded_model(**data)
sharded_loss = criterion(sharded_output)
sharded_optimizer.backward(sharded_loss)
org_model.train()
data = {k: v.cuda() for k, v in data.items()}
org_output = org_model(**data)
org_loss = criterion(org_output)
org_loss.backward()
return org_loss, org_output, sharded_loss, sharded_output
def check_output_hidden_state(
org_output: Tensor,
sharded_output: Tensor,
stage_manager: Optional[PipelineStageManager] = None,
atol: float = 1e-5,
rtol: float = 1e-3,
dim: int = 0,
):
org_hidden_state = org_output.last_hidden_state
if stage_manager and stage_manager.is_last_stage():
sharded_hidden_state = sharded_output["outputs"]["last_hidden_state"]
else:
sharded_hidden_state = sharded_output.last_hidden_state
assert_close(org_hidden_state.float(), sharded_hidden_state.float(), atol=atol, rtol=rtol)
def check_loss(org_loss: Tensor, sharded_loss: Tensor, atol: float = 1e-5, rtol: float = 1e-3):
assert torch.allclose(org_loss.float(), sharded_loss.float(), atol=atol, rtol=rtol)
def check_weight(
org_model: Module,
sharded_model: Module,
layer_suffix: List[str],
tp_group: Optional[ProcessGroup] = None,
dim: int = 0,
atol: float = 1e-5,
rtol: float = 1e-3,
verbose: bool = False,
):
for suffix in layer_suffix:
org_weight = getattr_(org_model, suffix).weight
sharded_weight = getattr_(sharded_model, suffix).weight
if is_distributed_tensor(sharded_weight) or is_customized_distributed_tensor(sharded_weight):
sharded_weight_list = [
torch.zeros_like(sharded_weight).to("cuda") for _ in range(dist.get_world_size(tp_group))
]
dist.all_gather(sharded_weight_list, sharded_weight, tp_group)
sharded_weight = torch.cat(sharded_weight_list, dim=dim)
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' weight: {org_weight}, {sharded_weight}")
assert_close(org_weight.float(), sharded_weight.float(), atol=atol, rtol=rtol)
def get_grad_tensors_for_check(
org_model: Module,
sharded_model: Module,
layer_suffix: List[str],
tp_group: ProcessGroup = None,
dim: int = 0,
atol: float = 1e-5,
rtol: float = 1e-3,
verbose: bool = False,
name: str = None,
):
grad_to_check = {}
for suffix in layer_suffix:
org_grad = getattr_(org_model, suffix).weight.grad
shard_grad = getattr_(sharded_model, suffix).weight.grad
shard_weight = getattr_(sharded_model, suffix).weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros_like(shard_grad).to("cuda") for _ in range(dist.get_world_size(tp_group))]
dist.all_gather(shard_grad_list, shard_grad, tp_group)
shard_grad = torch.cat(shard_grad_list, dim=dim)
# embedding may be resized when using tensor parallel
if shard_grad.shape[0] > org_grad.shape[0]:
shard_grad = shard_grad[: org_grad.shape[0], :]
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' grad: {org_grad}, {shard_grad}")
grad_to_check[suffix] = {
"org_grad": org_grad.float(),
"shard_grad": shard_grad.float(),
"rtol": rtol,
"atol": atol,
}
return grad_to_check
# used by sam/blip2
def check_grad(
org_model: Module,
sharded_model: Module,
layer_suffix: List[str],
tp_group: ProcessGroup = None,
dim: int = 0,
atol: float = 1e-5,
rtol: float = 1e-3,
verbose: bool = False,
):
for suffix in layer_suffix:
org_grad = getattr_(org_model, suffix).weight.grad
shard_grad = getattr_(sharded_model, suffix).weight.grad
shard_weight = getattr_(sharded_model, suffix).weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros_like(shard_grad).to("cuda") for _ in range(dist.get_world_size(tp_group))]
dist.all_gather(shard_grad_list, shard_grad, tp_group)
shard_grad = torch.cat(shard_grad_list, dim=dim)
# embedding may be resized when using tensor parallel
if shard_grad.shape[0] > org_grad.shape[0]:
shard_grad = shard_grad[: org_grad.shape[0], :]
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' grad: {org_grad}, {shard_grad}")
assert_close(org_grad.float(), shard_grad.float(), rtol=rtol, atol=atol)
def unwrap_model(
module: Module, base_model_class_name: Optional[str] = None, base_model_attribute_name: Optional[str] = None
):
if isinstance(module, HybridParallelModule):
module = module.unwrap()
if base_model_class_name is None:
return module
if module.__class__.__name__ == base_model_class_name:
return module
return getattr(module, base_model_attribute_name, None)
def check_all_grad_tensors(check_tensors):
"""
"org_grad": tensor to be compared from the original model
"shard_grad": tensor to be compared from the sharded model
"""
for suffix, check_info in check_tensors.items():
org_grad = check_info["org_grad"]
shard_grad = check_info["shard_grad"]
rtol = check_info["rtol"]
atol = check_info["atol"]
assert_close(org_grad, shard_grad, atol=atol, rtol=rtol)