ColossalAI/tests/test_zero/test_gemini/test_zeroddp_state_dict.py

140 lines
5.1 KiB
Python

import pytest
import torch
from torch.testing import assert_close
import colossalai
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.zero import GeminiDDP
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import set_seed
PLACEMENT_CONFIGS = [
{
'placement_policy': 'static',
'shard_param_frac': 0.0
}, # zero2
{
'placement_policy': 'static',
'shard_param_frac': 1.0
}, # zero3
{
'placement_policy': 'static',
'shard_param_frac': 0.5
}, # zero3-half
{
'placement_policy': 'auto'
}
]
def ignore_the_first_parameter(model: torch.nn.Module):
for name, param in model.named_parameters():
print(f"parameter `{name}` is set ignored")
GeminiDDP.set_params_to_ignore([param])
return
@parameterize('placement_config', PLACEMENT_CONFIGS)
@parameterize('keep_gathered', [True, False])
@parameterize('model_name', ['gpt2', 'bert'])
def exam_state_dict(placement_config, keep_gathered, model_name: str):
set_seed(431)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model = model_builder()
torch_model = model_builder()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p.data)
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
config_dict[world_size]['chunk_size'] = 5000
config_dict[world_size]['keep_gathered'] = keep_gathered
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
model.train()
zero_dict = model.state_dict(only_rank_0=False)
torch_dict = torch_model.state_dict()
for key, value in torch_dict.items():
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
@parameterize('placement_config', PLACEMENT_CONFIGS)
@parameterize('keep_gathered', [True, False])
@parameterize('model_name', ['gpt2', 'bert'])
def exam_load_state_dict(placement_config, keep_gathered, model_name: str):
set_seed(431)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model = model_builder()
set_seed(451)
torch_model = model_builder() # get a different model
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
config_dict[world_size]['chunk_size'] = 5000
config_dict[world_size]['keep_gathered'] = keep_gathered
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
torch_dict = torch_model.state_dict()
model.load_state_dict(torch_dict, strict=False)
zero_dict = model.state_dict(only_rank_0=False)
for key, value in torch_dict.items():
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
@parameterize('placement_config', PLACEMENT_CONFIGS)
@parameterize('model_name', ['gpt2', 'bert'])
def exam_state_dict_shard(placement_config, model_name: str):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model = model_builder()
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
model = GeminiDDP(model, config_dict, **placement_config)
model.train()
zero_dict = model.state_dict(only_rank_0=False)
accumulated_keys = set()
# ensure number of shards > 1
for shard, _ in model.state_dict_shard(max_shard_size=(model_size / 3), only_rank_0=False):
for key, value in shard.items():
assert key not in accumulated_keys, f"key `{key}` is duplicated."
accumulated_keys.add(key)
assert key in zero_dict, f"{key} not in ZeRO dictionary."
assert torch.equal(value, zero_dict[key]), f"{key} not equal."
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_state_dict()
exam_load_state_dict()
exam_state_dict_shard()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_zero_ddp(world_size):
spawn(run_dist, world_size)
if __name__ == '__main__':
test_zero_ddp(1)