mirror of https://github.com/hpcaitech/ColossalAI
79 lines
2.9 KiB
Python
79 lines
2.9 KiB
Python
import pytest
|
|
import torch
|
|
from torch.nn.parameter import Parameter
|
|
from torch.nn.utils import clip_grad_norm_
|
|
|
|
import colossalai
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.tensor import ColoTensorSpec, ProcessGroup, distspec
|
|
from colossalai.tensor.colo_parameter import ColoParameter
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.utils.common import clip_grad_norm
|
|
|
|
|
|
def close(num: float, other: float, rtol: float = 1e-5, atol: float = 1e-8):
|
|
return abs(num - other) <= atol + rtol * other
|
|
|
|
|
|
def shard_param(p: ColoParameter) -> None:
|
|
pg = p.get_process_group()
|
|
p._redistribute(distspec.ShardSpec([0], [pg.tp_world_size()]))
|
|
p.grad = p.grad.chunk(pg.tp_world_size(), 0)[pg.tp_local_rank()].clone().detach()
|
|
|
|
|
|
def check_grad_equal(p: Parameter, colo_p: ColoParameter) -> None:
|
|
pg = colo_p.get_process_group()
|
|
if p.shape != colo_p.shape:
|
|
grad = p.grad.chunk(pg.tp_world_size(), 0)[pg.tp_local_rank()]
|
|
else:
|
|
grad = p.grad
|
|
assert torch.allclose(grad, colo_p.grad), f'diff: {torch.abs(grad - colo_p.grad)}'
|
|
|
|
|
|
@parameterize('dtype', [torch.float])
|
|
@parameterize('device', ['mixed', 'cuda', 'cpu'])
|
|
@parameterize('norm_type', [2.0, 3.0, float('inf')])
|
|
def run_grad_clip_norm(world_size: int, dtype: torch.dtype, device: str, norm_type: float):
|
|
print(f'{world_size}, {dtype}, {device}, {norm_type}')
|
|
cuda_device = get_current_device()
|
|
devices = [cuda_device] * 4
|
|
if device == 'cpu':
|
|
devices = [torch.device('cpu')] * 4
|
|
elif device == 'mixed':
|
|
devices = [cuda_device] * 2 + [torch.device('cpu')] * 2
|
|
pg = ProcessGroup(tp_degree=world_size)
|
|
params = [Parameter(torch.empty(4, 4, dtype=dtype, device=devices[i])) for i in range(4)]
|
|
colo_params = [
|
|
ColoParameter(torch.empty(4, 4, dtype=dtype, device=devices[i]), spec=ColoTensorSpec(pg)) for i in range(4)
|
|
]
|
|
for p, colo_p in zip(params, colo_params):
|
|
grad = torch.rand_like(p)
|
|
p.grad = grad
|
|
colo_p.grad = grad.clone().detach()
|
|
shard_param(colo_params[0])
|
|
shard_param(colo_params[2])
|
|
torch_norm = clip_grad_norm_(params, 1.0, norm_type=norm_type)
|
|
colo_norm = clip_grad_norm(colo_params, 1.0, norm_type=norm_type)
|
|
assert close(torch_norm, colo_norm), f'diff: {abs(torch_norm-colo_norm)}'
|
|
for p, colo_p in zip(params, colo_params):
|
|
check_grad_equal(p, colo_p)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
run_grad_clip_norm(world_size=world_size)
|
|
|
|
|
|
@pytest.mark.skip("this need to be updated")
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize('world_size', [1, 2])
|
|
@rerun_if_address_is_in_use()
|
|
def test_zero_clip_grad(world_size: int):
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_zero_clip_grad(2)
|