ColossalAI/tests/test_infer_ops/triton/test_rotary_embedding.py

57 lines
1.6 KiB
Python

# Adapted from ModelTC https://github.com/ModelTC/lightllm
import time
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
from colossalai.kernel.triton.rotary_embedding_kernel import rotary_embedding_fwd
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
def torch_rotary_emb(x, cos, sin):
seq_len, h, dim = x.shape
x0 = x[:, :, 0:dim // 2]
x1 = x[:, :, dim // 2:dim]
cos = cos.view((seq_len, 1, dim // 2))
sin = sin.view((seq_len, 1, dim // 2))
o0 = x0 * cos - x1 * sin
o1 = x0 * sin + x1 * cos
return torch.cat((o0, o1), dim=-1)
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
def test_rotary_emb():
SEQ_LEN = 1
HEAD_NUM = 32
HEAD_DIM = 128
dtype = torch.half
# create data
x_shape = (SEQ_LEN, HEAD_NUM, HEAD_DIM)
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
cos_shape = (SEQ_LEN, HEAD_DIM // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device='cuda')
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device='cuda')
# forward pass
y_torch = torch_rotary_emb(x, cos, sin)
rotary_embedding_fwd(x, cos, sin)
y_triton = x
# compare
assert torch.allclose(y_torch, y_triton, atol=1e-2, rtol=0)
if __name__ == "__main__":
test_rotary_emb()