ColossalAI/tests/test_infer/test_infer_engine.py

95 lines
3.9 KiB
Python

from itertools import accumulate
import pytest
import torch
import torch.nn as nn
from packaging import version
from transformers import BloomConfig, BloomForCausalLM, LlamaConfig, LlamaForCausalLM
from transformers.tokenization_utils_base import BatchEncoding
import colossalai
from colossalai.inference.tensor_parallel import TPInferEngine
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
TP_SIZE = 2
MAX_BATCH_SIZE = 4
MAX_INPUT_LEN = 16
MAX_OUTPUT_LEN = 8
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.5')
@parameterize('test_config', [{
'tp_size': TP_SIZE,
}])
def run(test_config):
model_config = BloomConfig(num_hidden_layers=4, hidden_size=128, intermediate_size=256, num_attention_heads=4)
model = BloomForCausalLM(model_config)
model = model.half()
model.to(torch.cuda.current_device())
# 1. check TPInferEngine init and model optimization
shard_config = ShardConfig(enable_tensor_parallelism=True if test_config['tp_size'] > 1 else False,
inference_only=True)
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
assert infer_engine.cache_manager is not None
assert infer_engine.tp_size == TP_SIZE
assert infer_engine.head_num == model_config.num_attention_heads // TP_SIZE
# 2. check data preparation
input_ids_list = [[80540, 15473, 3331, 11970, 90472, 361, 61335], [80540, 15473, 3331, 11970],
[80540, 15473, 3331, 11970], [80540, 15473]]
batch_size = len(input_ids_list)
max_seq_len = max(len(li) for li in input_ids_list)
attention_mask = [[0] * max_seq_len for _ in range(batch_size)]
for i, li in enumerate(input_ids_list):
attention_mask[i][max_seq_len - len(li):] = [1 for _ in range(len(li))]
data = dict(input_ids=input_ids_list, attention_mask=attention_mask)
inputs_batch_encoding = BatchEncoding(data=data)
seq_lengths = [len(li) for li in input_ids_list]
start_loc = list(accumulate([0] + seq_lengths[:-1]))
seq_lengths = torch.tensor(seq_lengths, dtype=torch.int32)
start_loc = torch.tensor(start_loc, dtype=torch.int32)
# input token id list as inputs
batch_state_out1 = infer_engine.prepare_batch_state(inputs_batch_encoding)
# BatchEncoding as inputs
batch_state_out2 = infer_engine.prepare_batch_state(input_ids_list)
assert batch_state_out1.batch_size == batch_state_out2.batch_size == batch_size
assert torch.equal(batch_state_out1.seq_len, batch_state_out2.seq_len)
# The following tests are discarded for now, and will be reused after all features are added
# assert torch.equal(batch_state_out1.seq_len.to(seq_lengths.device), seq_lengths)
# assert torch.equal(batch_state_out2.seq_len.to(seq_lengths.device), seq_lengths)
# assert torch.equal(batch_state_out1.start_loc.to(start_loc.device), start_loc)
# assert torch.equal(batch_state_out2.start_loc.to(start_loc.device), start_loc)
# 3. check optimized model generate
input_ids = torch.randint(low=10, high=1000, size=(MAX_BATCH_SIZE, MAX_INPUT_LEN))
generate_kwargs = dict(do_sample=False)
infer_engine.generate(input_ids, **generate_kwargs)
torch.cuda.empty_cache()
def check_engine(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run()
@pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_engine():
spawn(check_engine, TP_SIZE)
if __name__ == '__main__':
test_engine()