mirror of https://github.com/hpcaitech/ColossalAI
167 lines
6.6 KiB
Python
167 lines
6.6 KiB
Python
import time
|
|
|
|
import datasets
|
|
import torch
|
|
import transformers
|
|
from args import parse_demo_args
|
|
from data import NetflixDataset, netflix_collator
|
|
from tqdm import tqdm
|
|
from transformers import AutoConfig, AutoTokenizer, OPTForCausalLM, get_linear_schedule_with_warmup
|
|
from transformers.utils.versions import require_version
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
|
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
|
|
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
|
|
|
|
output_transform_fn = lambda x: x
|
|
criterion = lambda x: x.loss
|
|
|
|
|
|
def move_to_cuda(batch, device):
|
|
return {k: v.to(device) for k, v in batch.items()}
|
|
|
|
|
|
def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator):
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
|
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
|
total_step = len(dataloader)
|
|
|
|
model.train()
|
|
optimizer.zero_grad()
|
|
dataloader = iter(dataloader)
|
|
with tqdm(range(total_step), desc=f'Epoch [{epoch + 1}]',
|
|
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
|
|
|
|
# Forward pass
|
|
for _ in pbar:
|
|
if use_pipeline:
|
|
outputs = booster.execute_pipeline(dataloader,
|
|
model,
|
|
_criterion,
|
|
optimizer,
|
|
return_loss=True,
|
|
return_outputs=True)
|
|
# Backward and optimize
|
|
if is_pp_last_stage:
|
|
loss = outputs['loss']
|
|
pbar.set_postfix({'loss': loss.item()})
|
|
else:
|
|
data = next(dataloader)
|
|
data = move_to_cuda(data)
|
|
outputs = model(**data)
|
|
loss = _criterion(outputs, None)
|
|
# Backward
|
|
booster.backward(loss, optimizer)
|
|
pbar.set_postfix({'loss': loss.item()})
|
|
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
lr_scheduler.step()
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_demo_args()
|
|
|
|
# Launch ColossalAI
|
|
colossalai.launch_from_torch(config={}, seed=args.seed)
|
|
coordinator = DistCoordinator()
|
|
world_size = coordinator.world_size
|
|
|
|
# Manage loggers
|
|
disable_existing_loggers()
|
|
logger = get_dist_logger()
|
|
if coordinator.is_master():
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# Build OPT model
|
|
config = AutoConfig.from_pretrained(args.model_name_or_path)
|
|
model = OPTForCausalLM.from_pretrained(args.model_name_or_path, config=config)
|
|
logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0])
|
|
|
|
# Enable gradient checkpointing
|
|
model.gradient_checkpointing_enable()
|
|
|
|
# Set plugin
|
|
booster_kwargs = {}
|
|
if args.plugin == 'torch_ddp_fp16':
|
|
booster_kwargs['mixed_precision'] = 'fp16'
|
|
if args.plugin.startswith('torch_ddp'):
|
|
plugin = TorchDDPPlugin()
|
|
elif args.plugin == 'gemini':
|
|
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
|
|
elif args.plugin == 'low_level_zero':
|
|
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
|
elif args.plugin == 'hybrid_parallel':
|
|
# modify the param accordingly for finetuning test cases
|
|
plugin = HybridParallelPlugin(tp_size=2,
|
|
pp_size=2,
|
|
num_microbatches=2,
|
|
enable_all_optimization=True,
|
|
zero_stage=0,
|
|
precision='fp16',
|
|
initial_scale=1)
|
|
|
|
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
|
|
|
|
# Prepare tokenizer and dataloader
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
|
|
dataset = NetflixDataset(tokenizer)
|
|
dataloader = plugin.prepare_dataloader(dataset,
|
|
batch_size=args.batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=netflix_collator)
|
|
|
|
# Set optimizer
|
|
optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size), weight_decay=args.weight_decay)
|
|
|
|
# Set lr scheduler
|
|
total_steps = len(dataloader) * args.num_epoch
|
|
num_warmup_steps = int(args.warmup_ratio * total_steps)
|
|
lr_scheduler = get_linear_schedule_with_warmup(optimizer,
|
|
num_warmup_steps=num_warmup_steps,
|
|
num_training_steps=len(dataloader) * args.num_epoch)
|
|
|
|
# Define criterion
|
|
def _criterion(outputs, inputs):
|
|
outputs = output_transform_fn(outputs)
|
|
loss = criterion(outputs)
|
|
return loss
|
|
|
|
# Set booster
|
|
booster = Booster(plugin=plugin, **booster_kwargs)
|
|
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(model=model,
|
|
optimizer=optimizer,
|
|
dataloader=dataloader,
|
|
criterion=_criterion,
|
|
lr_scheduler=lr_scheduler)
|
|
|
|
# Start finetuning
|
|
logger.info(f"Start finetuning", ranks=[0])
|
|
for epoch in range(args.num_epoch):
|
|
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator)
|
|
|
|
# Finish training and evaluate
|
|
logger.info(f"Finish finetuning", ranks=[0])
|
|
booster.save_model(model, args.output_path, shard=True)
|
|
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|