mirror of https://github.com/hpcaitech/ColossalAI
153 lines
5.3 KiB
Python
153 lines
5.3 KiB
Python
import argparse
|
|
import functools
|
|
import json
|
|
import multiprocessing
|
|
import os
|
|
import re
|
|
import time
|
|
from typing import List
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
def split_sentence(document: str, flag: str = "all", limit: int = 510) -> List[str]:
|
|
sent_list = []
|
|
try:
|
|
if flag == "zh":
|
|
document = re.sub('(?P<quotation_mark>([。?!…](?![”’"\'])))', r'\g<quotation_mark>\n', document)
|
|
document = re.sub('(?P<quotation_mark>([。?!]|…{1,2})[”’"\'])', r'\g<quotation_mark>\n', document)
|
|
elif flag == "en":
|
|
document = re.sub('(?P<quotation_mark>([.?!](?![”’"\'])))', r'\g<quotation_mark>\n', document)
|
|
document = re.sub('(?P<quotation_mark>([?!.]["\']))', r'\g<quotation_mark>\n',
|
|
document) # Special quotation marks
|
|
else:
|
|
document = re.sub('(?P<quotation_mark>([。?!….?!](?![”’"\'])))', r'\g<quotation_mark>\n', document)
|
|
|
|
document = re.sub('(?P<quotation_mark>(([。?!.!?]|…{1,2})[”’"\']))', r'\g<quotation_mark>\n',
|
|
document) # Special quotation marks
|
|
|
|
sent_list_ori = document.splitlines()
|
|
for sent in sent_list_ori:
|
|
sent = sent.strip()
|
|
if not sent:
|
|
continue
|
|
elif len(sent) <= 2:
|
|
continue
|
|
else:
|
|
while len(sent) > limit:
|
|
temp = sent[0:limit]
|
|
sent_list.append(temp)
|
|
sent = sent[limit:]
|
|
sent_list.append(sent)
|
|
except:
|
|
sent_list.clear()
|
|
sent_list.append(document)
|
|
return sent_list
|
|
|
|
|
|
def get_sent(output_path, input_path, fin_list=[], host=-1, seq_len=512) -> None:
|
|
|
|
workers = 32
|
|
|
|
if input_path[-1] == '/':
|
|
input_path = input_path[:-1]
|
|
|
|
cur_path = os.path.join(output_path, str(host) + '.txt')
|
|
new_split_sentence = functools.partial(split_sentence, limit=seq_len - 2)
|
|
with open(cur_path, 'w', encoding='utf-8') as f:
|
|
for fi, fin_path in enumerate(fin_list):
|
|
if not os.path.exists(os.path.join(input_path, fin_path[0])):
|
|
continue
|
|
if '.json' not in fin_path[0]:
|
|
continue
|
|
|
|
print("Processing ", fin_path[0], " ", fi)
|
|
|
|
with open(os.path.join(input_path, fin_path[0]), 'r') as fin:
|
|
f_data = [l['content'] for l in json.load(fin)]
|
|
|
|
pool = multiprocessing.Pool(workers)
|
|
all_sent = pool.imap_unordered(new_split_sentence, f_data, 32)
|
|
pool.close()
|
|
print('finished..')
|
|
|
|
cnt = 0
|
|
for d in tqdm(all_sent):
|
|
for i in d:
|
|
f.write(i.strip() + '\n')
|
|
f.write(']]' + '\n')
|
|
cnt += 1
|
|
# if cnt >= 2:
|
|
# exit()
|
|
|
|
|
|
def getFileSize(filepath, shard):
|
|
all_data = []
|
|
for i in os.listdir(filepath):
|
|
all_data.append(os.path.join(filepath, i))
|
|
all_size = sum([os.path.getsize(os.path.join(filepath, f)) for f in all_data])
|
|
ans = [[f.split('/')[-1], os.path.getsize(os.path.join(filepath, f))] for f in all_data]
|
|
ans = sorted(ans, key=lambda x: x[1], reverse=True)
|
|
per_size = all_size / shard
|
|
real_shard = []
|
|
temp = []
|
|
accu_size = 0
|
|
for i in ans:
|
|
accu_size += i[1]
|
|
temp.append(i)
|
|
if accu_size > per_size:
|
|
real_shard.append(temp)
|
|
accu_size = 0
|
|
temp = []
|
|
|
|
if len(temp) > 0:
|
|
real_shard.append(temp)
|
|
|
|
return real_shard
|
|
|
|
|
|
def get_start_end(real_shard, base=0, server_num=10, server_name='GPU'):
|
|
import socket
|
|
host = int(socket.gethostname().split(server_name)[-1])
|
|
|
|
fin_list = real_shard[server_num * base + host - 1]
|
|
print(fin_list)
|
|
print(f'I am server {host}, process {server_num * base + host - 1}, len {len(fin_list)}')
|
|
return fin_list, host
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--server_num', type=int, default=10, help='number of servers')
|
|
parser.add_argument('--seq_len', type=int, default=512, help='sequence length')
|
|
parser.add_argument('--shard', type=int, default=100, help='number of shards, e.g., 10, 50, or 100')
|
|
parser.add_argument('--input_path', type=str, required=True, help='input path of original corpus')
|
|
parser.add_argument('--output_path', type=str, required=True, help='output path of shard which has split sentence')
|
|
args = parser.parse_args()
|
|
|
|
server_num = args.server_num
|
|
seq_len = args.seq_len
|
|
shard = args.shard
|
|
input_path = args.input_path
|
|
output_path = args.output_path
|
|
|
|
real_shard = getFileSize(input_path, shard)
|
|
|
|
start = time.time()
|
|
for index, shard in enumerate(real_shard):
|
|
get_sent(output_path, input_path, fin_list=shard, host=index, seq_len=seq_len)
|
|
print(f'cost {str(time.time() - start)}')
|
|
|
|
# if you have multiple server, you can use code below or modify code to openmpi
|
|
|
|
# for i in range(len(real_shard) // server_num + 1):
|
|
# fin_list, host = get_start_end(real_shard, i)
|
|
|
|
# start = time.time()
|
|
# get_sent(output_path,
|
|
# input_path,
|
|
# fin_list=fin_list, host= 10 * i + host - 1)
|
|
|
|
# print(f'cost {str(time.time() - start)}')
|