ColossalAI/examples/community/roberta/preprocessing/mask.cpp

191 lines
5.5 KiB
C++

#include <math.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <limits>
#include <random>
#include <stdexcept>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace py = pybind11;
const int32_t LONG_SENTENCE_LEN = 512;
struct MaskedLMInstance {
int index;
std::string label;
MaskedLMInstance(int index, std::string label) {
this->index = index;
this->label = label;
}
};
auto get_new_segment(
std::vector<std::string> segment, std::vector<std::string> segment_jieba,
const std::vector<bool> chinese_vocab) { // const
// std::unordered_set<std::string>
// &chinese_vocab
std::unordered_set<std::string> seq_cws_dict;
for (auto word : segment_jieba) {
seq_cws_dict.insert(word);
}
int i = 0;
std::vector<std::string> new_segment;
int segment_size = segment.size();
while (i < segment_size) {
if (!chinese_vocab[i]) { // chinese_vocab.find(segment[i]) ==
// chinese_vocab.end()
new_segment.emplace_back(segment[i]);
i += 1;
continue;
}
bool has_add = false;
for (int length = 3; length >= 1; length--) {
if (i + length > segment_size) {
continue;
}
std::string chinese_word = "";
for (int j = i; j < i + length; j++) {
chinese_word += segment[j];
}
if (seq_cws_dict.find(chinese_word) != seq_cws_dict.end()) {
new_segment.emplace_back(segment[i]);
for (int j = i + 1; j < i + length; j++) {
new_segment.emplace_back("##" + segment[j]);
}
i += length;
has_add = true;
break;
}
}
if (!has_add) {
new_segment.emplace_back(segment[i]);
i += 1;
}
}
return new_segment;
}
bool startsWith(const std::string &s, const std::string &sub) {
return s.find(sub) == 0 ? true : false;
}
auto create_whole_masked_lm_predictions(
std::vector<std::string> &tokens,
const std::vector<std::string> &original_tokens,
const std::vector<std::string> &vocab_words,
std::map<std::string, int> &vocab, const int max_predictions_per_seq,
const double masked_lm_prob) {
// for (auto item : vocab) {
// std::cout << "key=" << std::string(py::str(item.first)) << ", "
// << "value=" << std::string(py::str(item.second)) <<
// std::endl;
// }
std::vector<std::vector<int> > cand_indexes;
std::vector<int> cand_temp;
int tokens_size = tokens.size();
std::string prefix = "##";
bool do_whole_masked = true;
for (int i = 0; i < tokens_size; i++) {
if (tokens[i] == "[CLS]" || tokens[i] == "[SEP]") {
continue;
}
if (do_whole_masked && (cand_indexes.size() > 0) &&
(tokens[i].rfind(prefix, 0) == 0)) {
cand_temp.emplace_back(i);
} else {
if (cand_temp.size() > 0) {
cand_indexes.emplace_back(cand_temp);
}
cand_temp.clear();
cand_temp.emplace_back(i);
}
}
auto seed = std::chrono::system_clock::now().time_since_epoch().count();
std::shuffle(cand_indexes.begin(), cand_indexes.end(),
std::default_random_engine(seed));
// for (auto i : cand_indexes) {
// for (auto j : i) {
// std::cout << tokens[j] << " ";
// }
// std::cout << std::endl;
// }
// for (auto i : output_tokens) {
// std::cout << i;
// }
// std::cout << std::endl;
int num_to_predict = std::min(max_predictions_per_seq,
std::max(1, int(tokens_size * masked_lm_prob)));
// std::cout << num_to_predict << std::endl;
std::set<int> covered_indexes;
std::vector<int> masked_lm_output(tokens_size, -1);
int vocab_words_len = vocab_words.size();
std::default_random_engine e(seed);
std::uniform_real_distribution<double> u1(0.0, 1.0);
std::uniform_int_distribution<unsigned> u2(0, vocab_words_len - 1);
int mask_cnt = 0;
std::vector<std::string> output_tokens;
output_tokens = original_tokens;
for (auto index_set : cand_indexes) {
if (mask_cnt > num_to_predict) {
break;
}
int index_set_size = index_set.size();
if (mask_cnt + index_set_size > num_to_predict) {
continue;
}
bool is_any_index_covered = false;
for (auto index : index_set) {
if (covered_indexes.find(index) != covered_indexes.end()) {
is_any_index_covered = true;
break;
}
}
if (is_any_index_covered) {
continue;
}
for (auto index : index_set) {
covered_indexes.insert(index);
std::string masked_token;
if (u1(e) < 0.8) {
masked_token = "[MASK]";
} else {
if (u1(e) < 0.5) {
masked_token = output_tokens[index];
} else {
int random_index = u2(e);
masked_token = vocab_words[random_index];
}
}
// masked_lms.emplace_back(MaskedLMInstance(index, output_tokens[index]));
masked_lm_output[index] = vocab[output_tokens[index]];
output_tokens[index] = masked_token;
mask_cnt++;
}
}
// for (auto p : masked_lms) {
// masked_lm_output[p.index] = vocab[p.label];
// }
return std::make_tuple(output_tokens, masked_lm_output);
}
PYBIND11_MODULE(mask, m) {
m.def("create_whole_masked_lm_predictions",
&create_whole_masked_lm_predictions);
m.def("get_new_segment", &get_new_segment);
}