ColossalAI/colossalai/shardformer/modeling/whisper.py

981 lines
46 KiB
Python

import logging
import random
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
SequenceClassifierOutput,
)
from transformers.models.whisper.modeling_whisper import (
WhisperEncoder,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
)
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
def get_whisper_flash_attention_forward():
from transformers.models.whisper.modeling_whisper import WhisperAttention
from colossalai.kernel import AttnMaskType, ColoAttention
def shape(tensor: torch.Tensor, seq_len: int, bsz: int, num_heads: int, head_dim: int):
return tensor.view(bsz, seq_len, num_heads, head_dim).contiguous()
def forward(
self: WhisperAttention,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[1] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = shape(self.k_proj(key_value_states), -1, bsz, self.num_heads, self.head_dim)
value_states = shape(self.v_proj(key_value_states), -1, bsz, self.num_heads, self.head_dim)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = shape(self.k_proj(hidden_states), -1, bsz, self.num_heads, self.head_dim)
value_states = shape(self.v_proj(hidden_states), -1, bsz, self.num_heads, self.head_dim)
key_states = torch.cat([past_key_value[0], key_states], dim=1)
value_states = torch.cat([past_key_value[1], value_states], dim=1)
else:
# self_attention
key_states = shape(self.k_proj(hidden_states), -1, bsz, self.num_heads, self.head_dim)
value_states = shape(self.v_proj(hidden_states), -1, bsz, self.num_heads, self.head_dim)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
# get query proj
query_states = shape(self.q_proj(hidden_states), tgt_len, bsz, self.num_heads, self.head_dim)
src_len = key_states.size(1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_type = None
flash_attention_mask = None
if self.is_decoder:
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool).contiguous())
if not torch.all(flash_attention_mask):
attn_type = AttnMaskType.paddedcausal
else:
attn_type = AttnMaskType.causal
attention = ColoAttention(
embed_dim=self.embed_dim, num_heads=self.num_heads, dropout=self.dropout, scale=self.scaling
)
attn_output = attention(
query_states, key_states, value_states, attn_mask=flash_attention_mask, attn_mask_type=attn_type
)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
return forward
def get_jit_fused_whisper_encoder_layer_forward():
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
def forward(
self: WhisperEncoderLayer,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training)
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
return forward
def get_jit_fused_whisper_decoder_layer_forward():
from transformers.models.whisper.modeling_whisper import WhisperDecoderLayer
def forward(
self: WhisperDecoderLayer,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
return forward
class WhisperPipelineForwards:
"""
This class serves as a micro library for forward function substitution of Llama models
under pipeline setting.
"""
@staticmethod
def whisper_encoder_forward(
self: WhisperEncoder,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
encoder_states=None,
all_attentions=None,
stage_index: Optional[List[int]] = None,
decoder_starting_stage: Optional[int] = None,
):
r"""
Args:
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
attention_mask (`torch.Tensor`)`, *optional*):
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
but it is not used. By default the silence in the input log mel spectrogram are ignored.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
logging.get_logger(__name__)
stage = stage_manager.stage
at_first_stage = stage == 0
at_last_stage = stage == decoder_starting_stage - 1
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Process inputs if at the first stage of encoder.
if at_first_stage:
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
else:
if hidden_states is None:
raise ValueError(
"hidden_states shouldn't be None for stages other than the first stage of encoder/decoder."
)
start_idx, end_idx = stage_index[0], stage_index[1]
for idx in range(start_idx, end_idx):
encoder_layer = self.layers[idx]
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
None,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
None,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if at_last_stage:
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
else:
return {"hidden_states": hidden_states, "head_mask": head_mask}
@staticmethod
def whisper_decoder_forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
decoder_starting_stage: Optional[int] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
logger = logging.get_logger(__name__)
stage = stage_manager.stage
at_first_stage = stage == decoder_starting_stage
at_last_stage = stage == stage_manager.num_stages - 1
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (len(self.layers)), (
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if at_first_stage:
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if input_ids is not None:
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
else:
positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..."
)
use_cache = False
else:
if hidden_states is None:
raise ValueError(
"hidden_states shouldn't be None for stages other than the first stage of encoder/decoder."
)
input_shape = hidden_states.size()[:-1]
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, hidden_states, past_key_values_length
)
start_idx, end_idx = stage_index[0], stage_index[1]
for idx in range(start_idx, end_idx):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
decoder_layer = self.layers[idx]
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
None, # encoder attention mask
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None, # past_key_value
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if at_last_stage:
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
else:
return {
"head_mask": head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"hidden_states": hidden_states,
}
@staticmethod
def whisper_model_forward(
self: WhisperModel,
input_features: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
decoder_starting_stage: Optional[int] = None,
):
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, WhisperModel
>>> from datasets import load_dataset
>>> model = WhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
if past_key_values:
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.")
past_key_values = None
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
if use_cache:
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
use_cache = False
logging.get_logger(__name__)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
in_decoder = stage_manager.stage >= decoder_starting_stage
if not in_decoder:
if encoder_outputs is None:
input_features = self._mask_input_features(input_features, attention_mask=attention_mask)
encoder_outputs = WhisperPipelineForwards.whisper_encoder_forward(
self.encoder,
input_features,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
decoder_starting_stage=decoder_starting_stage,
)
if stage_manager.stage == decoder_starting_stage - 1:
# last stage of encoder
return {"encoder_hidden_states": encoder_outputs[0]}
else:
return encoder_outputs
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
at_last_decoder_stage = stage_manager.is_last_stage()
at_first_decoder_stage = stage_manager.stage == decoder_starting_stage
if encoder_outputs is not None:
encoder_hidden_states = encoder_outputs[0]
elif encoder_hidden_states is None:
raise ValueError("Non-empty encoder_hidden_states should be passed in at decoder stages.")
if not at_first_decoder_stage and hidden_states is None:
raise ValueError("If not at the first layer of decoder, non-empty hidden_states must be provided.")
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = WhisperPipelineForwards.whisper_decoder_forward(
self.decoder,
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
decoder_starting_stage=decoder_starting_stage,
)
# Directly return outputs of overloaded Whisper forward if not at last stage.
if not at_last_decoder_stage:
# encoder_hidden_states should be passed to the next stage
decoder_outputs["encoder_hidden_states"] = encoder_hidden_states
return decoder_outputs
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_hidden_states,
)
@staticmethod
def whisper_for_conditional_generation_forward(
self: WhisperForConditionalGeneration,
input_features: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
decoder_starting_stage: Optional[int] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> generated_ids = model.generate(inputs=input_features)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
in_decoder = stage_manager.stage >= decoder_starting_stage
at_last_decoder_stage = stage_manager.is_last_stage()
outputs = WhisperPipelineForwards.whisper_model_forward(
self.model,
input_features,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
stage_index=stage_index,
decoder_starting_stage=decoder_starting_stage,
)
if not in_decoder:
return outputs
if not at_last_decoder_stage:
# encoder_hidden_states should be passed to the next stage
outputs["encoder_hidden_states"] = encoder_hidden_states
return outputs
lm_logits = self.proj_out(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@staticmethod
def whisper_for_audio_classification_forward(
self: WhisperForAudioClassification,
input_features: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
encoder_states=None,
all_attentions=None,
stage_index: Optional[List[int]] = None,
decoder_starting_stage: Optional[int] = None,
):
r"""
This function is modified on the basis of transformers.models.whisper.modeling_whisper.WhisperForAudioClassification.forward.
Please refer to original code of transformers for more details.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# audio_classification only holds encoder
encoder_outputs = WhisperPipelineForwards.whisper_encoder_forward(
self.encoder,
input_features,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
decoder_starting_stage=decoder_starting_stage,
)
if not stage_manager.is_last_stage():
return encoder_outputs
if self.config.use_weighted_layer_sum:
hidden_states = torch.stack(encoder_outputs, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = encoder_outputs[0]
hidden_states = self.projector(hidden_states)
pooled_output = hidden_states.mean(dim=1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# move labels to correct device to enable PP
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + encoder_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)