You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/optimizer/fused_sgd.py

155 lines
5.9 KiB

# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py
import torch
from torch.optim.optimizer import Optimizer, required
from colossalai.utils import multi_tensor_applier
class FusedSGD(Optimizer):
r"""Implements stochastic gradient descent (optionally with momentum).
`FusedSGD` requires CUDA extensions which can be built during installation or runtime.
This version of fused SGD implements 2 fusions.
* Fusion of the SGD update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``
:class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp.
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
v = \rho * v + g \\
p = p - lr * v
where p, g, v and :math:`\rho` denote the parameters, gradient,
velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form
.. math::
v = \rho * v + lr * g \\
p = p - v
The Nesterov version is analogously modified.
"""
def __init__(
self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False
):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(FusedSGD, self).__init__(params, defaults)
self.wd_after_momentum = wd_after_momentum
if multi_tensor_applier.available:
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
# Skip buffer
self._dummy_overflow_buf = torch.tensor(
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
)
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
else:
raise RuntimeError("FusedSGD requires cuda extensions")
def __setstate__(self, state):
super(FusedSGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
def get_momentums(self, params):
momentums = []
first_run = True
for p in params:
param_state = self.state[p]
# torch.optim.SGD initializes momentum in the main loop, we have
# to do it here, and track whether or not we've done so, so that
# momentum application can be skipped in the main kernel.
if "momentum_buffer" not in param_state:
first_run = True
buf = param_state["momentum_buffer"] = torch.zeros_like(p)
momentums.append(buf)
else:
first_run = False
momentums.append(param_state["momentum_buffer"])
return momentums, first_run
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group["weight_decay"]
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
# For each group, there are 3 possible combinations we need to consider:
# grad_type, param_to_update_type, momentum_type
# 1. fp16, fp16, fp16
# 2. fp32, fp32, fp32
# 3. fp16, fp32, fp32
g_l, p_l = [], []
for p in group["params"]:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError("FusedSGD does not support sparse gradients")
g_l.append(p.grad)
p_l.append(p)
m_l, first_run = self.get_momentums(p_l)
multi_tensor_applier(
self.multi_tensor_sgd,
self._dummy_overflow_buf,
[g_l, p_l, m_l],
weight_decay,
momentum,
dampening,
group["lr"],
nesterov,
first_run,
self.wd_after_momentum,
1.0,
)
return loss