mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.9 KiB
155 lines
5.9 KiB
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py
|
|
import torch
|
|
from torch.optim.optimizer import Optimizer, required
|
|
|
|
from colossalai.utils import multi_tensor_applier
|
|
|
|
|
|
class FusedSGD(Optimizer):
|
|
r"""Implements stochastic gradient descent (optionally with momentum).
|
|
|
|
`FusedSGD` requires CUDA extensions which can be built during installation or runtime.
|
|
|
|
This version of fused SGD implements 2 fusions.
|
|
|
|
* Fusion of the SGD update's elementwise operations
|
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
|
|
|
|
:class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``
|
|
|
|
:class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp.
|
|
|
|
Nesterov momentum is based on the formula from
|
|
`On the importance of initialization and momentum in deep learning`__.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float): learning rate
|
|
momentum (float, optional): momentum factor (default: 0)
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
dampening (float, optional): dampening for momentum (default: 0)
|
|
nesterov (bool, optional): enables Nesterov momentum (default: False)
|
|
|
|
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
|
|
|
|
.. note::
|
|
The implementation of SGD with Momentum/Nesterov subtly differs from
|
|
Sutskever et. al. and implementations in some other frameworks.
|
|
Considering the specific case of Momentum, the update can be written as
|
|
|
|
.. math::
|
|
v = \rho * v + g \\
|
|
p = p - lr * v
|
|
|
|
where p, g, v and :math:`\rho` denote the parameters, gradient,
|
|
velocity, and momentum respectively.
|
|
This is in contrast to Sutskever et. al. and
|
|
other frameworks which employ an update of the form
|
|
|
|
.. math::
|
|
v = \rho * v + lr * g \\
|
|
p = p - v
|
|
|
|
The Nesterov version is analogously modified.
|
|
"""
|
|
|
|
def __init__(
|
|
self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False
|
|
):
|
|
if lr is not required and lr < 0.0:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if momentum < 0.0:
|
|
raise ValueError("Invalid momentum value: {}".format(momentum))
|
|
if weight_decay < 0.0:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
|
|
if nesterov and (momentum <= 0 or dampening != 0):
|
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
|
|
super(FusedSGD, self).__init__(params, defaults)
|
|
|
|
self.wd_after_momentum = wd_after_momentum
|
|
|
|
if multi_tensor_applier.available:
|
|
from colossalai.kernel.op_builder import FusedOptimBuilder
|
|
|
|
fused_optim = FusedOptimBuilder().load()
|
|
|
|
# Skip buffer
|
|
self._dummy_overflow_buf = torch.tensor(
|
|
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
|
|
)
|
|
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
|
|
else:
|
|
raise RuntimeError("FusedSGD requires cuda extensions")
|
|
|
|
def __setstate__(self, state):
|
|
super(FusedSGD, self).__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault("nesterov", False)
|
|
|
|
def get_momentums(self, params):
|
|
momentums = []
|
|
first_run = True
|
|
for p in params:
|
|
param_state = self.state[p]
|
|
# torch.optim.SGD initializes momentum in the main loop, we have
|
|
# to do it here, and track whether or not we've done so, so that
|
|
# momentum application can be skipped in the main kernel.
|
|
if "momentum_buffer" not in param_state:
|
|
first_run = True
|
|
buf = param_state["momentum_buffer"] = torch.zeros_like(p)
|
|
momentums.append(buf)
|
|
else:
|
|
first_run = False
|
|
momentums.append(param_state["momentum_buffer"])
|
|
return momentums, first_run
|
|
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
weight_decay = group["weight_decay"]
|
|
momentum = group["momentum"]
|
|
dampening = group["dampening"]
|
|
nesterov = group["nesterov"]
|
|
|
|
# For each group, there are 3 possible combinations we need to consider:
|
|
# grad_type, param_to_update_type, momentum_type
|
|
# 1. fp16, fp16, fp16
|
|
# 2. fp32, fp32, fp32
|
|
# 3. fp16, fp32, fp32
|
|
g_l, p_l = [], []
|
|
for p in group["params"]:
|
|
if p.grad is None:
|
|
continue
|
|
if p.grad.data.is_sparse:
|
|
raise RuntimeError("FusedSGD does not support sparse gradients")
|
|
g_l.append(p.grad)
|
|
p_l.append(p)
|
|
m_l, first_run = self.get_momentums(p_l)
|
|
multi_tensor_applier(
|
|
self.multi_tensor_sgd,
|
|
self._dummy_overflow_buf,
|
|
[g_l, p_l, m_l],
|
|
weight_decay,
|
|
momentum,
|
|
dampening,
|
|
group["lr"],
|
|
nesterov,
|
|
first_run,
|
|
self.wd_after_momentum,
|
|
1.0,
|
|
)
|
|
|
|
return loss
|