You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/optimizer/fused_adam.py

162 lines
6.3 KiB

# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_adam.py
"""
Copyright 2020 The Microsoft DeepSpeed Team
Copyright NVIDIA/apex
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
Licensed under the MIT License.
"""
import torch
from colossalai.utils import multi_tensor_applier
class FusedAdam(torch.optim.Optimizer):
"""Implements Adam algorithm.
`FusedAdam` requires CUDA extensions which can be built during installation or runtime.
This version of fused Adam implements 2 fusions.
* Fusion of the Adam update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
:class:`colossalai.nn.optimizer.FusedAdam` may be used with or without Amp.
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED in FusedAdam!
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
adamw_mode=True,
weight_decay=0.0,
amsgrad=False,
set_grad_none=True,
):
if amsgrad:
raise RuntimeError("FusedAdam does not support the AMSGrad variant.")
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay)
super(FusedAdam, self).__init__(params, defaults)
self.adamw_mode = 1 if adamw_mode else 0
self.set_grad_none = set_grad_none
if multi_tensor_applier.available:
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
# Skip buffer
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
self.multi_tensor_adam = fused_optim.multi_tensor_adam
else:
raise RuntimeError("FusedAdam requires cuda extensions")
def zero_grad(self, set_to_none=False):
if set_to_none:
for group in self.param_groups:
for p in group["params"]:
p.grad = None
else:
super(FusedAdam, self).zero_grad()
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, div_scale: float = -1):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
"""
if any(p is not None for p in [grads, output_params, scale, grad_norms]):
raise RuntimeError(
"FusedAdam has been updated. Simply initialize it identically to torch.optim.Adam, and call step() with no arguments."
)
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
bias_correction = 1 if group["bias_correction"] else 0
beta1, beta2 = group["betas"]
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if "step" in group:
group["step"] += 1
else:
group["step"] = 1
# create lists for multi-tensor apply
g_l, p_l, m_l, v_l = [], [], [], []
for p in group["params"]:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
"FusedAdam does not support sparse gradients, please consider SparseAdam instead"
)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p)
if p.dtype not in [torch.float16, torch.float32, torch.bfloat16]:
raise RuntimeError("FusedAdam only support fp16, fp32 and bf16.")
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state["exp_avg"])
v_l.append(state["exp_avg_sq"])
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_l, p_l, m_l, v_l],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adamw_mode,
bias_correction,
group["weight_decay"],
div_scale,
)
return loss