ColossalAI/tests/test_autochunk/test_autochunk_search.py

104 lines
3.2 KiB
Python

from functools import partial
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
import colossalai
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.core import global_context as gpc
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import MetaTensor
from colossalai.utils import free_port
from tests.test_autochunk.evoformer.evoformer import evoformer_base
def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
found_regions = [i["region"] for i in chunk_infos]
if msa_len == 32 and pair_len == 64:
if max_memory is None:
target_regions = [(142, 154), (366, 373), (233, 283), (301, 351), (127, 134), (204, 228), (167, 191), (161, 166), (198, 203), (6, 69)]
elif max_memory == 20:
target_regions = [(142, 154), (369, 373), (233, 269), (301, 351)]
elif max_memory == 25:
target_regions = [(144, 154), (369, 370)]
elif max_memory == 30:
target_regions = [(144, 154)]
else:
raise NotImplementedError()
else:
raise NotImplementedError()
assert len(found_regions) == len(
target_regions
), "len of found regions %s doesn't equal len of target regions %s" % (
str(found_regions),
str(target_regions),
)
for region in target_regions:
assert (
region in found_regions
), "region:%s not in found regions for msa:%d, pair:%d, maxmem:%d" % (
str(region),
msa_len,
pair_len,
max_memory,
)
for region in found_regions:
assert (
region in target_regions
), "region:%s should not be found for msa:%d, pair:%d, maxmem:%d" % (
str(region),
msa_len,
pair_len,
max_memory,
)
def _test_autochunk_search(rank, msa_len, pair_len, max_memory):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
model = evoformer_base().cuda()
node = torch.randn(1, msa_len, pair_len, 256).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory)
chunk_infos = codegen.chunk_infos
assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len)
gpc.destroy()
@pytest.mark.parametrize("max_memory", [None, 20, 25, 30])
@pytest.mark.parametrize("msa_len", [32])
@pytest.mark.parametrize("pair_len", [64])
def test_autochunk_search(msa_len, pair_len, max_memory):
run_func = partial(
_test_autochunk_search,
msa_len=msa_len,
pair_len=pair_len,
max_memory=max_memory,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
_test_autochunk_search(0, 32, 64, 20)