mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
6.8 KiB
229 lines
6.8 KiB
import copy
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
from colossalai.testing.random import seed_all
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
def __init__(self):
|
|
super(MlpModel, self).__init__()
|
|
self.linear1 = nn.Linear(123, 253)
|
|
self.linear_drop = nn.Linear(253, 253)
|
|
self.linear2 = nn.Linear(253, 512)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
|
rtol = None
|
|
atol = None
|
|
if dtype is torch.float16:
|
|
rtol = 5e-2
|
|
atol = 5e-4
|
|
elif dtype is torch.bfloat16:
|
|
rtol = 4e-3
|
|
atol = 4e-3
|
|
|
|
a = a.detach().to(dtype)
|
|
b = b.detach().to(dtype)
|
|
|
|
assert_close(a, b, rtol=rtol, atol=atol)
|
|
|
|
|
|
def split_ddp_grad(grad, world_size):
|
|
with torch.no_grad():
|
|
grad = grad.clone().detach().flatten()
|
|
padding_size = (world_size - grad.numel() % world_size) % world_size
|
|
if padding_size > 0:
|
|
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
|
splited_grad = grad.split(grad.numel() // world_size)
|
|
return splited_grad
|
|
|
|
|
|
@parameterize("fp8_communication", [True, False])
|
|
def exam_zero_1_2(fp8_communication: bool):
|
|
"""
|
|
In this test, we want to test whether zero stage 1 and 2
|
|
deliver the same numerical results despite different communication
|
|
pattern
|
|
|
|
we use these prefixes to differentiate the zero stage
|
|
oss: partition optimizer states
|
|
pg: partition gradients and optimizer states
|
|
|
|
"""
|
|
local_rank = torch.distributed.get_rank()
|
|
seed_all(2001)
|
|
|
|
# create model
|
|
zero1_model = MlpModel().cuda()
|
|
zero2_model = copy.deepcopy(zero1_model)
|
|
|
|
# create optimizer
|
|
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
|
|
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
|
|
zero1_optimizer = LowLevelZeroOptimizer(
|
|
zero1_optimizer,
|
|
overlap_communication=True,
|
|
initial_scale=128,
|
|
verbose=True,
|
|
fp8_communication=fp8_communication,
|
|
)
|
|
zero2_optimizer = LowLevelZeroOptimizer(
|
|
zero2_optimizer,
|
|
overlap_communication=True,
|
|
partition_grad=True,
|
|
initial_scale=128,
|
|
fp8_communication=fp8_communication,
|
|
)
|
|
# create data
|
|
seed_all(2001 + local_rank)
|
|
input_data = torch.randn(32, 123).cuda()
|
|
|
|
zero1_output = zero1_model(input_data)
|
|
zero2_output = zero2_model(input_data)
|
|
assert torch.equal(zero1_output, zero2_output)
|
|
|
|
# zero-dp backward
|
|
zero1_optimizer.backward(zero1_output.mean().float())
|
|
zero2_optimizer.backward(zero2_output.mean().float())
|
|
|
|
# check grad
|
|
for p1, p2 in zip(zero1_model.parameters(), zero2_model.parameters()):
|
|
g1 = zero1_optimizer.get_param_grad(p1)
|
|
g2 = zero2_optimizer.get_param_grad(p2)
|
|
if g1 is None or g2 is None:
|
|
assert g1 is None and g2 is None
|
|
continue
|
|
if fp8_communication:
|
|
loose_close(g1, g2, dtype=torch.float16)
|
|
else:
|
|
assert torch.allclose(g1, g2)
|
|
|
|
# step
|
|
zero1_optimizer.step()
|
|
zero2_optimizer.step()
|
|
|
|
# check updated param
|
|
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
|
|
if not fp8_communication:
|
|
assert torch.allclose(z1p, z2p)
|
|
|
|
|
|
@parameterize("dtype", [torch.float16, torch.bfloat16])
|
|
@parameterize("master_weights", [True, False])
|
|
@parameterize("extra_dp_size", [1, 2])
|
|
def exam_zero_1_torch_ddp(dtype: torch.dtype, master_weights: bool, extra_dp_size: int):
|
|
"""
|
|
In this test, two pairs of model and optimizers are created.
|
|
1. zero: use sharded optimizer and fp16 parameters
|
|
2. torch: use torch DDP and fp32 parameters
|
|
|
|
We feed these two sets of models with the same input and check if the
|
|
differences in model output and updated parameters are within tolerance.
|
|
"""
|
|
if extra_dp_size > 1 and dtype != torch.bfloat16:
|
|
return
|
|
if extra_dp_size > 1:
|
|
pg_mesh = ProcessGroupMesh(extra_dp_size, dist.get_world_size() // extra_dp_size)
|
|
extra_dp_group = pg_mesh.get_group_along_axis(0)
|
|
dp_group = pg_mesh.get_group_along_axis(1)
|
|
else:
|
|
extra_dp_group = None
|
|
dp_group = None
|
|
local_rank = torch.distributed.get_rank()
|
|
seed_all(1453)
|
|
|
|
# create models
|
|
torch_model = MlpModel().cuda().to(dtype)
|
|
zero_model = copy.deepcopy(torch_model).to(dtype)
|
|
|
|
torch_model = DDP(torch_model.cuda(), static_graph=True).cuda()
|
|
|
|
# create optimizer
|
|
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
|
|
|
# we only test stage 1 here
|
|
# in `check_sharded_param_consistency.py`, we will test whether
|
|
# level 1 and 2 will produce exactly the same results
|
|
zero_optimizer = LowLevelZeroOptimizer(
|
|
zero_optimizer,
|
|
overlap_communication=True,
|
|
initial_scale=1,
|
|
reduce_bucket_size=1024 * 1024,
|
|
master_weights=master_weights,
|
|
dp_process_group=dp_group,
|
|
extra_dp_group=extra_dp_group,
|
|
)
|
|
|
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
|
|
|
seed_all(1453 + local_rank)
|
|
|
|
for _ in range(2):
|
|
# create
|
|
input_data = torch.rand(32, 123).cuda().to(dtype)
|
|
|
|
# zero-dp forward
|
|
zero_output = zero_model(input_data)
|
|
|
|
# torch-ddp forward
|
|
torch_output = torch_model(input_data)
|
|
loose_close(zero_output, torch_output, dtype=dtype)
|
|
|
|
# zero-dp backward
|
|
zero_optimizer.backward(zero_output.mean())
|
|
|
|
# torch-ddp backward
|
|
torch_output.mean().backward()
|
|
|
|
# check grad
|
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
|
zero_grad = zero_optimizer.get_param_grad(z1p)
|
|
if p.grad is None:
|
|
assert zero_grad is None
|
|
continue
|
|
loose_close(p.grad, zero_grad, dtype=dtype)
|
|
|
|
# zero-dp step
|
|
zero_optimizer.step()
|
|
|
|
# torch ddp step
|
|
torch_optimizer.step()
|
|
|
|
zero_optimizer._force_wait_all_gather()
|
|
|
|
# check updated param
|
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
|
loose_close(p, z1p, dtype=dtype)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
|
|
|
|
exam_zero_1_torch_ddp()
|
|
exam_zero_1_2()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_zero_1_2():
|
|
spawn(run_dist, 4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_zero_1_2()
|