ColossalAI/colossalai/checkpoint_io/utils.py

875 lines
32 KiB
Python

# coding=utf-8
import os
import re
from collections import abc as container_abcs
from collections import defaultdict
from itertools import chain
from pathlib import Path
from typing import Dict, Iterator, List, Mapping, Optional, OrderedDict, Tuple
import torch
import torch.nn as nn
from packaging.version import Version
from torch.optim import Optimizer
from torch.utils._pytree import tree_map
from colossalai.tensor.d_tensor import (
is_customized_distributed_tensor,
is_distributed_tensor,
to_global,
to_global_for_customized_distributed_tensor,
)
from colossalai.utils.safetensors import move_and_save
SAFE_WEIGHTS_NAME = "model.safetensors"
WEIGHTS_NAME = "pytorch_model.bin"
STATES_NAME = "pytorch_optim.bin"
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
STATES_INDEX_NAME = "pytorch_optim.bin.index.json"
GROUP_FILE_NAME = "pytorch_optim_group.bin"
# ======================================
# General helper functions
# ======================================
def calculate_tensor_size(tensor: torch.Tensor) -> float:
"""
Calculate the size of a parameter in MB. Used to compute whether a group of params exceed the shard size.
If so, a new shard should be created.
Args:
tensor (torch.Tensor): the tensor to calculate size for.
Returns:
float: size of the tensor in MB.
"""
return tensor.numel() * tensor.element_size() / 1024 / 1024
def is_safetensors_available() -> bool:
"""
Check whether safetensors is available.
Returns:
bool: whether safetensors is available.
"""
try:
return True
except ImportError:
return False
def is_dtensor_checkpoint(checkpoint_file_path: str) -> bool:
"""
Check whether the checkpoint file is a dtensor checkpoint.
Args:
checkpoint_file_path (str): path to the checkpoint file.
Returns:
bool: whether the checkpoint file is a dtensor checkpoint.
"""
if checkpoint_file_path.endswith(".*.safetensors") or checkpoint_file_path.endswith(".*.bin"):
return True
else:
return False
def is_safetensor_checkpoint(checkpoint_file_path: str) -> bool:
"""
Check whether the checkpoint file is a safetensor checkpoint.
Args:
checkpoint_file_path (str): path to the checkpoint file.
Returns:
bool: whether the checkpoint file is a safetensor checkpoint.
"""
if checkpoint_file_path.endswith(".safetensors"):
return True
else:
return False
def search_tp_partition_dim(current_shape: torch.Size, original_shape: torch.Size, tp_size: int) -> Optional[int]:
"""
Given the current shape of parameter and the shape of parameter before sharding,
return the dimension along which the parameter is sharded when using tensor parallel.
If tensor parallel is not used, return None.
Args:
current_shape (torch.Size): The current shape of parameter after sharding.
original_shape (torch.Size): The shape of parameter before sharding.
tp_size (int): The size of tp group.
Returns:
Optional[int]: The dimension along which parameter is partitioned.
"""
partition_dim = None
for dim, length in enumerate(original_shape):
if length > current_shape[dim]:
partition_dim = dim
break
if partition_dim is not None:
assert (
original_shape[partition_dim] == tp_size * current_shape[partition_dim]
), f"The parameter isn't evenly distributed among tensor parallel group: \
shape before sharding {original_shape}, shape after sharding {current_shape}"
return partition_dim
def search_padding_dim(global_shape: torch.Size, original_shape: torch.Size) -> Optional[int]:
padding_dim = None
for dim, length in enumerate(global_shape):
if length > original_shape[dim]:
padding_dim = dim
break
return padding_dim
# ======================================
# Helper classes and functions for saving shard file
# ======================================
class StateDictSharder:
def __init__(self, size_per_shard: int) -> None:
self.max_shard_size = size_per_shard
self.current_block = OrderedDict()
self.current_block_size = 0
def append_param(self, name: str, tensor: torch.Tensor) -> Tuple[Optional[OrderedDict], int]:
tensor_size = calculate_tensor_size(tensor)
ret_block = None
ret_block_size = 0
# before we return the current block and create a new block,
# we need to ensure that the current block is not empty
if self.current_block_size + tensor_size > self.max_shard_size and self.current_block_size > 0:
ret_block = self.current_block
ret_block_size = self.current_block_size
self.current_block = OrderedDict()
self.current_block_size = 0
self.current_block[name] = tensor
self.current_block_size += tensor_size
return ret_block, ret_block_size
def append_optim_state(self, param_id: int, state: OrderedDict) -> Tuple[Optional[OrderedDict], int]:
# A state might contain more than one tensors.
# e.g. each Adam state includes: 'step', 'exp_avg', 'exp_avg_sq'
state_size = 0
isDTensor = False
for state_tensor in state.values():
# When state_tensor is not of Tensor class,
# e.g., a SGD optimizer with momentum set to 0 can have None as state
# The calculation of tensor size should be skipped to avoid error.
if not isinstance(state_tensor, torch.Tensor):
continue
# If the states are stored as DTensors, mark isDTensor as true.
if is_distributed_tensor(state_tensor):
isDTensor = True
state_size += calculate_tensor_size(state_tensor)
ret_block = None
ret_block_size = 0
# directly return if state is stored as distributed tensor
if isDTensor:
return ret_block, ret_block_size
# before we return the current block and create a new block,
# we need to ensure that the current block is not empty
if self.current_block_size + state_size > self.max_shard_size and self.current_block_size > 0:
ret_block = self.current_block
ret_block_size = self.current_block_size
self.current_block = OrderedDict()
self.current_block_size = 0
self.current_block[param_id] = state
self.current_block_size += state_size
return ret_block, ret_block_size
def gather_distributed_param(param: torch.Tensor, keep_vars: bool = False) -> torch.Tensor:
"""
Gather the complete parameter for saving if passed in param is distributed under tp setting.
Args:
param (torch.Tensor): A model parameter, might be d_tensor.
keep_vars (bool, optional): Whether to return the parameter in calculation graph. Defaults to False.
Returns:
torch.Tensor: the complete parameter
"""
param_ = param if keep_vars else param.detach()
if is_distributed_tensor(param_):
return to_global(param_)
elif is_customized_distributed_tensor(param_):
return to_global_for_customized_distributed_tensor(param_)
else:
return param_
def save_state_dict_shards(
sharded_state_dict: Iterator[Tuple[OrderedDict, int]],
checkpoint: str,
index_file: "CheckpointIndexFile",
base_filename: str,
is_master: bool,
use_safetensors: bool = False,
use_pp_format: bool = False,
) -> int:
"""
Save sharded state dict only on master rank, this method can be used by both model and optimizer states.
Args:
sharded_state_dict (Iterator[Tuple[OrderedDict, int]]): a generator of shards, each shard contains state dict and shard size.
checkpoint (str): The path of checkpoint directory as string.
index_file (CheckpointIndexFile): The index file object to be updated.
base_filename (str): Decides the prefix of filenames of shards.
is_master (bool): Whether current rank is main process.
use_safetensors (bool, optional): Whether to use safetensors to save checkpoint. Defaults to False.
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
Returns:
int: the total size of shards
"""
total_size = 0
shard_filenames = []
for idx, shard_pair in enumerate(sharded_state_dict):
shard, current_size = shard_pair
# Just loop over the sharder and gather to other ranks if not master
if not is_master:
del shard
continue
shard_file = get_shard_filename(base_filename, idx)
total_size = total_size + current_size
for key in shard.keys():
index_file.append_weight_map(key, shard_file)
checkpoint_file_path = os.path.join(checkpoint, shard_file)
# Only save on master rank.
save_state_dict(shard, checkpoint_file_path, use_safetensors=use_safetensors)
shard_filenames.append(shard_file)
del shard
# Clean folder, deleted unneeded files.
clean_folder(checkpoint, base_filename, shard_filenames, is_master=is_master, use_pp_format=use_pp_format)
return total_size
def async_save_state_dict_shards(
sharded_state_dict: Iterator[Tuple[OrderedDict, int]],
checkpoint: str,
index_file: "CheckpointIndexFile",
base_filename: str,
is_master: bool,
pinned_state_dict: Optional[Dict[str, torch.Tensor]],
n_write_entries: int,
use_pp_format: bool = False,
) -> Tuple[int, Dict[str, torch.Tensor], list]:
"""
Save sharded state dict only on master rank, this method can be used by both model and optimizer states.
Args:
sharded_state_dict (Iterator[Tuple[OrderedDict, int]]): a generator of shards, each shard contains state dict and shard size.
checkpoint (str): The path of checkpoint directory as string.
index_file (CheckpointIndexFile): The index file object to be updated.
base_filename (str): Decides the prefix of filenames of shards.
is_master (bool): Whether current rank is main process.
use_safetensors (bool, optional): Whether to use safetensors to save checkpoint. Defaults to False.
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
Returns:
int: the total size of shards
"""
from tensornvme.async_file_io import AsyncFileWriter
total_size = 0
shard_filenames = []
if pinned_state_dict is None:
returned_state_dict = {}
else:
returned_state_dict = pinned_state_dict
writers = []
for idx, shard_pair in enumerate(sharded_state_dict):
shard, current_size = shard_pair
# Just loop over the sharder and gather to other ranks if not master
if not is_master:
del shard
continue
shard_file = get_shard_filename(base_filename, idx)
total_size = total_size + current_size
for key in shard.keys():
index_file.append_weight_map(key, shard_file)
checkpoint_file_path = os.path.join(checkpoint, shard_file)
writer = AsyncFileWriter(open(checkpoint_file_path, "wb"), n_write_entries, backend="pthread")
writers.append(writer)
if pinned_state_dict is not None:
sub_pinned_state_dict = {k: pinned_state_dict[k] for k in shard.keys()}
else:
sub_pinned_state_dict = create_pinned_state_dict(shard)
returned_state_dict.update(sub_pinned_state_dict)
# Only save on master rank.
move_and_save(writer, shard, sub_pinned_state_dict)
shard_filenames.append(shard_file)
del shard
# Clean folder, deleted unneeded files.
clean_folder(checkpoint, base_filename, shard_filenames, is_master=is_master, use_pp_format=use_pp_format)
return total_size, returned_state_dict, writers
def shard_model_checkpoint(state_dict: torch.Tensor, max_shard_size: int = 1024) -> Iterator[Tuple[OrderedDict, int]]:
"""
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
given size.
"""
state_dict_sharder = StateDictSharder(max_shard_size)
for key, weight in state_dict.items():
if not is_distributed_tensor(weight):
block, block_size = state_dict_sharder.append_param(key, weight)
if block != None:
yield block, block_size
# Return the last block in sharder.
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
def shard_optimizer_checkpoint(state_dict: dict, max_shard_size: int = 1024) -> Iterator[Tuple[OrderedDict, int]]:
"""
Splits an optimizer state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
given size.
"""
# Only split state_dict['state']; state_dict['param_group'] is not considered in this function.
states = state_dict["state"]
state_dict_sharder = StateDictSharder(max_shard_size)
for param_id, state in states.items():
block, block_size = state_dict_sharder.append_optim_state(param_id, state)
if block != None:
yield block, block_size
# Return the last block in sharder.
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
# ======================================
# Helper functions for saving state dict
# ======================================
def save_state_dict(state_dict: dict, checkpoint_file_path: str, use_safetensors: bool) -> None:
"""
Save state dict to checkpoint.
Args:
state_dict (dict): state dict.
checkpoint_file_path (str): path to the checkpoint file.
use_safetensors (bool): whether to use safetensors to save the checkpoint.
"""
# Move all tensors in the state_dict to CPU before saving to avoid serialization issues
state_dict_cpu = tree_map(lambda x: x.data.cpu() if torch.is_tensor(x) else x, state_dict)
if use_safetensors:
assert is_safetensors_available(), "safetensors is not available."
assert checkpoint_file_path.endswith(
".safetensors"
), "safetensors only supports .safetensors suffix for checkpoint file."
from safetensors.torch import save_file as safe_save_file
safe_save_file(state_dict_cpu, checkpoint_file_path, metadata={"format": "pt"})
else:
torch.save(state_dict_cpu, checkpoint_file_path)
def save_param_groups(state_dict: dict, group_file_path: str) -> None:
"""
Save information of param_groups to given file path.
Args:
state_dict (dict): state dict.
group_file_path (str): path to the group file.
"""
param_groups = state_dict["param_groups"]
torch.save(param_groups, group_file_path)
def clean_folder(
checkpoint_path: str,
weights_name: str,
shard_filenames: List[str],
is_master: bool = True,
use_pp_format: bool = False,
):
"""
Clean the unneeded files in checkpoint directory after shards of state_dict have been saved.
Args:
checkpoint_path (str): Path to the checkpoint directory.
weights_name (str): Decides the prefix of filenames of weight shards.
shard_filenames (List[str]): The list of saved shard filenames which should not be removed.
is_master (bool, optional): Whether current rank is main process. Defaults to True.
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
"""
if is_master:
for filename in os.listdir(checkpoint_path):
full_filename = os.path.join(checkpoint_path, filename)
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
if not use_pp_format:
reg = re.compile(r"(.*?)-\d{5}")
else:
# When this checkpoint is created by pipeline parallel process, the pattern is a little different.
reg = re.compile(r"(.*?)-stage-\d{5}-shard-\d{5}")
if (
filename.startswith(weights_no_suffix)
and os.path.isfile(full_filename)
and filename not in shard_filenames
and reg.fullmatch(filename_no_suffix) is not None
):
os.remove(full_filename)
def save_config_file(model: nn.Module, checkpoint_path: str, is_master: bool = True):
"""
Save config.json/generation_config.json if model is a Huggingface pretrained model.
This method can only be called when a model is saved in a sharded way.
Args:
model (nn.Module): The model whose config should be saved if it's a huggingface model.
checkpoint_path (str): Path to the checkpoint directory.
is_master (bool): Whether current rank is main process.
"""
try:
from transformers.modeling_utils import PreTrainedModel, get_parameter_dtype
from transformers.modeling_utils import unwrap_model as unwrap_huggingface_model
except ImportError:
return
if not isinstance(model, PreTrainedModel):
return
model = unwrap_huggingface_model(model)
# save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
dtype = get_parameter_dtype(model)
model.config.torch_dtype = str(dtype).split(".")[1]
# Attach architecture to the config
model.config.architectures = [model.__class__.__name__]
# Save the config
if is_master:
model.config.save_pretrained(checkpoint_path)
if model.can_generate():
model.generation_config.save_pretrained(checkpoint_path)
def save_dtensor(name: str, tensor: torch.Tensor, index_file: "CheckpointIndexFile", use_safetensors: bool) -> None:
"""
Save distributed tensor to checkpoint. This checkpoint will be a dictionary which contains
only one tensor.
Args:
tensor (Tensor): tensor to be saved.
index_file (CheckpointIndexFile): path to the checkpoint file.
size_per_shard (int): size per shard in MB.
"""
root_path = index_file.root_path
output_root_path = root_path.joinpath("dtensor")
# create directory
output_root_path.mkdir(exist_ok=True)
# save tensor to this directory
# TODO(YuliangLiu): get index of the tensor shard
# e.g. index =
index = 0
# save tensor to file
ckpt_file_name = generate_dtensor_file_name(name, index, use_safetensors)
ckpt_file_path = output_root_path.joinpath(ckpt_file_name)
# dtensor ckpt file always contains only one tensor
state_dict = {name: tensor}
save_state_dict(state_dict, str(ckpt_file_path), use_safetensors)
# update the weight map
# * means all shards
ckpt_file_name_in_weight_map = "dtensor/" + generate_dtensor_file_name(name, "*", use_safetensors)
index_file.append_weight_map(name, ckpt_file_name_in_weight_map)
def get_checkpoint_file_suffix(use_safetensors: bool) -> str:
"""
Get checkpoint file suffix.
Args:
use_safetensors (bool): whether to use safetensors to save the checkpoint.
Returns:
str: checkpoint file suffix.
"""
if use_safetensors:
return ".safetensors"
else:
return ".bin"
def generate_checkpoint_shard_file_name(
index: int, total_number: int, use_safetensors: bool, prefix: str = None
) -> str:
"""
Generate checkpoint shard file name.
Args:
index (int): index of the shard.
total_number (int): total number of shards.
use_safetensors (bool): whether to use safetensors to save the checkpoint.
prefix (str): prefix of the shard file name. Default: None.
Returns:
str: checkpoint shard file name.
"""
suffix = get_checkpoint_file_suffix(use_safetensors)
if prefix is None:
return f"{index:05d}-of-{total_number:05d}.{suffix}"
else:
return f"{prefix}-{index:05d}-of-{total_number:05d}.{suffix}"
def generate_dtensor_file_name(param_name: str, index: int, use_safetensors: bool) -> str:
"""
Generate dtensor file name.
Args:
param_name (str): name of the distributed parameter.
index (int): index of the shard.
use_safetensors (bool): whether to use safetensors to save the checkpoint.
Returns:
str: dtensor file name.
"""
suffix = get_checkpoint_file_suffix(use_safetensors)
return f"{param_name}.{index}.{suffix}"
# ========================================
# Helper functions for loading state dict
# ========================================
def load_shard_state_dict(checkpoint_file: Path, use_safetensors: bool = False):
"""
load shard state dict into model
"""
if use_safetensors and not checkpoint_file.suffix == ".safetensors":
raise Exception("load the model using `safetensors`, but no file endwith .safetensors")
if use_safetensors:
from safetensors.torch import load_file as safe_load_file
from safetensors.torch import safe_open
with safe_open(checkpoint_file, framework="pt") as f:
metadata = f.metadata()
if metadata["format"] != "pt":
raise NotImplementedError(
f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet."
)
return safe_load_file(checkpoint_file)
else:
return torch.load(checkpoint_file, map_location=torch.device("cpu"))
def load_state_dict_into_model(
model: nn.Module, state_dict: torch.Tensor, missing_keys: List, strict: bool = False, load_sub_module: bool = True
):
r"""Copies parameters and buffers from :attr:`state_dict` into
this module and its descendants.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
"""
if not isinstance(state_dict, Mapping):
raise TypeError("Expected state_dict to be dict-like, got {}.".format(type(state_dict)))
unexpected_keys: List[str] = []
sub_missing_keys: List[str] = []
error_msgs: List[str] = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = OrderedDict(state_dict)
if metadata is not None:
state_dict._metadata = metadata
def load(module: nn.Module, state_dict, prefix="", load_sub_module: bool = True):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
args = (state_dict, prefix, local_metadata, True, sub_missing_keys, unexpected_keys, error_msgs)
# Parameters of module and children will start with prefix. We can exit early if there are none in this
# state_dict
if strict or len([key for key in state_dict if key.startswith(prefix)]) > 0:
module._load_from_state_dict(*args)
if load_sub_module:
for name, child in module._modules.items():
if child is not None:
load(child, state_dict, prefix + name + ".")
load(model, state_dict, "", load_sub_module)
del load
missing_keys = missing_keys.append(sub_missing_keys)
if strict:
if len(unexpected_keys) > 0:
error_msgs = [
"Unexpected key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in unexpected_keys))
]
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
)
def load_param_groups_into_optimizer(optimizer: Optimizer, param_group_path: str) -> dict:
"""
Load information of param_groups into an initialized optimizer.
"""
# Load list of param_groups from given file path.
# The params in saved_groups are in the form of integer indices.
saved_groups = torch.load(param_group_path, map_location=torch.device("cpu"))
if not isinstance(saved_groups, List):
raise ValueError(f"The param_groups saved at {param_group_path} is not of List type")
# The params in param_groups are in the form of pytorch tensors.
# For more details, please view source code of Optimizer class in pytorch.
param_groups = optimizer.param_groups
# Check the compatibility of saved_groups and param_groups.
if len(param_groups) != len(saved_groups):
raise ValueError("loaded state dict has a different number of original parameter groups")
param_lens = (len(g["params"]) for g in param_groups)
saved_lens = (len(g["params"]) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError(
"loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group"
)
# Creating mapping from id to parameters.
id_map = {
old_id: p
for old_id, p in zip(
chain.from_iterable((g["params"] for g in saved_groups)),
chain.from_iterable((g["params"] for g in param_groups)),
)
}
# Update parameter groups, setting their 'params' value.
def update_group(group, new_group):
new_group["params"] = group["params"]
return new_group
updated_groups = [update_group(g, ng) for g, ng in zip(param_groups, saved_groups)]
optimizer.__dict__.update({"param_groups": updated_groups})
return id_map
def load_states_into_optimizer(optimizer: Optimizer, state_dict: dict, id_map: dict, strict: bool = False):
r"""Copies states from `state_dict` into an Optimizer object.
Args:
optimizer(Optimizer): An initialized Optimizer object to be loaded
state_dict(dict): A mapping from tensor index (an integer)
to its states to be loaded (a mapping from state name to a tensor).
id_map(dict): A mapping from tensor index (an integer)
to its corresponding parameter (a tensor) whose states will be updated.
strict(bool, optional): If set to True, only load the parameters with its id in id_map. Defaults to False.
"""
# Ensure that the keys of state_dict are integers.
state_dict = {int(k): v for k, v in state_dict.items()}
def cast(param, value, key=None):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424
if key != "step":
if param.is_floating_point():
value = value.to(param.dtype)
value = value.to(param.device)
return value
elif isinstance(value, dict):
return {k: cast(param, v, key=k) for k, v in value.items()}
elif isinstance(value, container_abcs.Iterable):
return type(value)(cast(param, v) for v in value)
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
new_states = defaultdict(dict)
for k, v in state_dict.items():
if k in id_map:
param = id_map[k]
new_states[param] = cast(param, v)
elif not strict:
new_states[k] = v
optimizer.state.update(new_states)
def sharded_optimizer_loading_epilogue(optimizer: Optimizer):
r"""Do the cleaning up work after state_dict has been loaded into optimizer
Args:
optimizer(Optimizer): An optimizer object whose state has just been loaded.
"""
# Do the cleaning up as in src code of Pytorch.
if Version(torch.__version__) >= Version("2.0.0"):
optimizer._patch_step_function() # To support multiprocessing pickle/unpickle
else:
optimizer._hook_for_profile() # To support multiprocessing pickle/unpickle.
optimizer.defaults.setdefault("differentiable", False)
def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]:
"""
Check whether the checkpoint has an index file.
Args:
checkpoint_path (str): path to the checkpoint.
Returns:
Tuple[bool, Optional[Path]]: a tuple of (has_index_file, index_file_path)
"""
checkpoint_path = Path(checkpoint_path)
if checkpoint_path.is_file():
# check if it is .index.json
reg = re.compile("(.*?).index((\..*)?).json")
if reg.fullmatch(checkpoint_path.name) is not None:
return True, checkpoint_path
else:
return False, None
elif checkpoint_path.is_dir():
# check if there is only one a file ending with .index.json in this directory
index_files = list(checkpoint_path.glob("*.index.*json"))
# if we found a .index.json file, make sure there is only one
if len(index_files) > 0:
assert (
len(index_files) == 1
), f"Expected to find one .index.json file in {checkpoint_path}, but found {len(index_files)}"
if len(index_files) == 1:
return True, index_files[0]
else:
return False, None
else:
raise RuntimeError(f"Invalid checkpoint path {checkpoint_path}. Expected a file or a directory.")
def load_state_dict(checkpoint_file_path: Path):
"""
Load state dict from checkpoint.
Args:
checkpoint_file_path (Path): path to the checkpoint file.
Returns:
dict: state dict.
"""
assert not is_dtensor_checkpoint(
checkpoint_file_path
), f"Cannot load state dict from dtensor checkpoint {checkpoint_file_path}, you should convert the distributed tensors to gathered tensors with our CLI offline."
if is_safetensor_checkpoint(checkpoint_file_path):
assert (
is_safetensors_available()
), f"Cannot load state dict from safetensor checkpoint {checkpoint_file_path}, because safetensors is not available. Please install safetensors first with pip install safetensors."
# load with safetensors
from safetensors import safe_open
state_dict = {}
with safe_open(checkpoint_file_path, framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
return state_dict
else:
# load with torch
return torch.load(checkpoint_file_path, map_location=torch.device("cpu"))
def add_prefix(weights_name: str, prefix: Optional[str] = None) -> str:
if prefix is not None and len(prefix) > 0:
splits = weights_name.split(".")
splits = splits[:-1] + [prefix] + splits[-1:]
weights_name = ".".join(splits)
return weights_name
def get_model_base_filenames(prefix: str = None, use_safetensors: bool = False):
"""
generate base model weight filenames
"""
weights_name = SAFE_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
weights_name = add_prefix(weights_name, prefix)
save_index_file = SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME
save_index_file = add_prefix(save_index_file, prefix)
return weights_name, save_index_file
def get_optimizer_base_filenames(prefix: str = None):
"""
generate base optimizer state filenames
"""
states_name = STATES_NAME
states_name = add_prefix(states_name, prefix)
save_index_file = STATES_INDEX_NAME
save_index_file = add_prefix(save_index_file, prefix)
param_group_file = GROUP_FILE_NAME
param_group_file = add_prefix(param_group_file, prefix)
return states_name, save_index_file, param_group_file
def get_shard_filename(weights_name: str, idx: int):
"""
get shard file name
"""
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}.bin")
shard_file = shard_file.replace(".safetensors", f"-{idx+1:05d}.safetensors")
return shard_file
def create_pinned_state_dict(state_dict: Dict[str, torch.Tensor]):
pin_mem = dict()
for name, tensor in state_dict.items():
pin_mem[name] = torch.empty_like(tensor, pin_memory=True, device="cpu")
return pin_mem