You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalQA/colossalqa/local/colossalcloud_llm.py

118 lines
4.0 KiB

"""
LLM wrapper for LLMs running on ColossalCloud Platform
Usage:
os.environ['URL'] = ""
os.environ['HOST'] = ""
gen_config = {
'max_new_tokens': 100,
# 'top_k': 2,
'top_p': 0.9,
'temperature': 0.5,
'repetition_penalty': 2,
}
llm = ColossalCloudLLM(n=1)
llm.set_auth_config()
resp = llm(prompt='What do you call a three-ton kangaroo?', **gen_config)
print(resp) # super-heavyweight awesome-natured yawning Australian creature!
"""
import json
from typing import Any, Mapping
import requests
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
class ColossalCloudLLM(LLM):
"""
A custom LLM class that integrates LLMs running on the ColossalCloud Platform
"""
n: int
gen_config: dict = None
auth_config: dict = None
valid_gen_para: list = ["max_new_tokens", "top_k", "top_p", "temperature", "repetition_penalty"]
def __init__(self, gen_config=None, **kwargs):
"""
Args:
gen_config: config for generation,
max_new_tokens: 50 by default
top_k: (1, vocab_size)
top_p: (0, 1) if not None
temperature: (0, inf) if not None
repetition_penalty: (1, inf) if not None
"""
super(ColossalCloudLLM, self).__init__(**kwargs)
if gen_config is None:
self.gen_config = {"max_new_tokens": 50}
else:
assert "max_new_tokens" in gen_config, "max_new_tokens is a compulsory key in the gen config"
self.gen_config = gen_config
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"n": self.n}
@property
def _llm_type(self) -> str:
return "ColossalCloudLLM"
def set_auth_config(self, **kwargs):
url = get_from_dict_or_env(kwargs, "url", "URL")
host = get_from_dict_or_env(kwargs, "host", "HOST")
auth_config = {}
auth_config["endpoint"] = url
auth_config["Host"] = host
self.auth_config = auth_config
def _call(self, prompt: str, stop=None, **kwargs: Any) -> str:
"""
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered
Returns:
The string generated by the model
"""
# Update the generation arguments
for key, value in kwargs.items():
if key not in self.valid_gen_para:
raise KeyError(
f"Invalid generation parameter: '{key}'. Valid keys are: {', '.join(self.valid_gen_para)}"
)
if key in self.gen_config:
self.gen_config[key] = value
resp_text = self.text_completion(prompt, self.gen_config, self.auth_config)
# TODO: This may cause excessive tokens count
if stop is not None:
for stopping_words in stop:
if stopping_words in resp_text:
resp_text = resp_text.split(stopping_words)[0]
return resp_text
def text_completion(self, prompt, gen_config, auth_config):
# Required Parameters
endpoint = auth_config.pop("endpoint")
max_new_tokens = gen_config.pop("max_new_tokens")
# Optional Parameters
optional_params = ["top_k", "top_p", "temperature", "repetition_penalty"] # Self.optional
gen_config = {key: gen_config[key] for key in optional_params if key in gen_config}
# Define the data payload
data = {"max_new_tokens": max_new_tokens, "history": [{"instruction": prompt, "response": ""}], **gen_config}
headers = {"Content-Type": "application/json", **auth_config} # 'Host',
# Make the POST request
response = requests.post(endpoint, headers=headers, data=json.dumps(data))
response.raise_for_status() # raise error if return code is not 200(success)
# Check the response
return response.text