ColossalAI/tests/test_booster/test_plugin/test_dp_plugin_base.py

89 lines
2.4 KiB
Python

from typing import Callable, Iterator, List, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader, TensorDataset
import colossalai
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
from colossalai.checkpoint_io import CheckpointIO
from colossalai.interface import OptimizerWrapper
from colossalai.testing import rerun_if_address_is_in_use, spawn
class DPPluginWrapper(DPPluginBase):
"""This is a wrapper class for testing DP plugin initialization and dataloader creation.
"""
def configure(
self,
model: nn.Module,
optimizer: Optimizer,
criterion: Callable = None,
dataloader: DataLoader = None,
lr_scheduler: LRScheduler = None,
) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]:
pass
def control_checkpoint_io(self) -> bool:
pass
def control_device(self) -> bool:
pass
def control_precision(self) -> bool:
pass
def get_checkpoint_io(self) -> CheckpointIO:
pass
def support_no_sync(self) -> bool:
pass
def supported_devices(self) -> List[str]:
pass
def supported_precisions(self) -> List[str]:
pass
def no_sync(self, model: nn.Module) -> Iterator[None]:
pass
def check_dataloader_sharding():
plugin = DPPluginWrapper()
# create a custom dataset with 0 to 10
dataset = TensorDataset(torch.arange(0, 10))
train_dataloader = plugin.prepare_dataloader(dataset, batch_size=2)
# get the first batch of data
batch = next(iter(train_dataloader))[0].cuda()
is_rank_0 = dist.get_rank() == 0
if is_rank_0:
batch_to_compare = batch.clone()
else:
batch_to_compare = batch
# pass to the rank 1 value to rank 0
dist.broadcast(batch_to_compare, src=1)
# compare on rank 0
if is_rank_0:
assert not torch.equal(batch,
batch_to_compare), 'Same number was found across ranks but expected it to be different'
def run_dist(rank, world_size, port):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
check_dataloader_sharding()
@rerun_if_address_is_in_use()
def test_dp_plugin_dataloader():
spawn(run_dist, 2)