mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
690 lines
25 KiB
690 lines
25 KiB
/* |
|
coding=utf-8 |
|
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
*/ |
|
|
|
/* Helper methods for fast index mapping builds */ |
|
|
|
#include <math.h> |
|
#include <pybind11/numpy.h> |
|
#include <pybind11/pybind11.h> |
|
|
|
#include <algorithm> |
|
#include <iostream> |
|
#include <limits> |
|
#include <random> |
|
#include <stdexcept> |
|
|
|
namespace py = pybind11; |
|
using namespace std; |
|
|
|
const int32_t LONG_SENTENCE_LEN = 512; |
|
|
|
void build_blending_indices(py::array_t<uint8_t>& dataset_index, |
|
py::array_t<int64_t>& dataset_sample_index, |
|
const py::array_t<double>& weights, |
|
const int32_t num_datasets, const int64_t size, |
|
const bool verbose) { |
|
/* Given multiple datasets and a weighting array, build samples |
|
such that it follows those wieghts.*/ |
|
|
|
if (verbose) { |
|
std::cout << "> building indices for blendable datasets ..." << std::endl; |
|
} |
|
|
|
// Get the pointer access without the checks. |
|
auto dataset_index_ptr = dataset_index.mutable_unchecked<1>(); |
|
auto dataset_sample_index_ptr = dataset_sample_index.mutable_unchecked<1>(); |
|
auto weights_ptr = weights.unchecked<1>(); |
|
|
|
// Initialize buffer for number of samples used for each dataset. |
|
int64_t current_samples[num_datasets]; |
|
for (int64_t i = 0; i < num_datasets; ++i) { |
|
current_samples[i] = 0; |
|
} |
|
|
|
// For each sample: |
|
for (int64_t sample_idx = 0; sample_idx < size; ++sample_idx) { |
|
// Determine where the max error in sampling is happening. |
|
auto sample_idx_double = std::max(static_cast<double>(sample_idx), 1.0); |
|
int64_t max_error_index = 0; |
|
double max_error = weights_ptr[0] * sample_idx_double - |
|
static_cast<double>(current_samples[0]); |
|
for (int64_t dataset_idx = 1; dataset_idx < num_datasets; ++dataset_idx) { |
|
double error = weights_ptr[dataset_idx] * sample_idx_double - |
|
static_cast<double>(current_samples[dataset_idx]); |
|
if (error > max_error) { |
|
max_error = error; |
|
max_error_index = dataset_idx; |
|
} |
|
} |
|
|
|
// Populate the indices. |
|
dataset_index_ptr[sample_idx] = static_cast<uint8_t>(max_error_index); |
|
dataset_sample_index_ptr[sample_idx] = current_samples[max_error_index]; |
|
|
|
// Update the total samples. |
|
current_samples[max_error_index] += 1; |
|
} |
|
|
|
// print info |
|
if (verbose) { |
|
std::cout << " > sample ratios:" << std::endl; |
|
for (int64_t dataset_idx = 0; dataset_idx < num_datasets; ++dataset_idx) { |
|
auto ratio = static_cast<double>(current_samples[dataset_idx]) / |
|
static_cast<double>(size); |
|
std::cout << " dataset " << dataset_idx |
|
<< ", input: " << weights_ptr[dataset_idx] |
|
<< ", achieved: " << ratio << std::endl; |
|
} |
|
} |
|
} |
|
|
|
py::array build_sample_idx(const py::array_t<int32_t>& sizes_, |
|
const py::array_t<int32_t>& doc_idx_, |
|
const int32_t seq_length, const int32_t num_epochs, |
|
const int64_t tokens_per_epoch) { |
|
/* Sample index (sample_idx) is used for gpt2 like dataset for which |
|
the documents are flattened and the samples are built based on this |
|
1-D flatten array. It is a 2D array with sizes [number-of-samples + 1, 2] |
|
where [..., 0] contains the index into `doc_idx` and [..., 1] is the |
|
starting offset in that document.*/ |
|
|
|
// Consistency checks. |
|
assert(seq_length > 1); |
|
assert(num_epochs > 0); |
|
assert(tokens_per_epoch > 1); |
|
|
|
// Remove bound checks. |
|
auto sizes = sizes_.unchecked<1>(); |
|
auto doc_idx = doc_idx_.unchecked<1>(); |
|
|
|
// Mapping and it's length (1D). |
|
int64_t num_samples = (num_epochs * tokens_per_epoch - 1) / seq_length; |
|
int32_t* sample_idx = new int32_t[2 * (num_samples + 1)]; |
|
|
|
cout << " using:" << endl << std::flush; |
|
cout << " number of documents: " << doc_idx_.shape(0) / num_epochs |
|
<< endl |
|
<< std::flush; |
|
cout << " number of epochs: " << num_epochs << endl |
|
<< std::flush; |
|
cout << " sequence length: " << seq_length << endl |
|
<< std::flush; |
|
cout << " total number of samples: " << num_samples << endl |
|
<< std::flush; |
|
|
|
// Index into sample_idx. |
|
int64_t sample_index = 0; |
|
// Index into doc_idx. |
|
int64_t doc_idx_index = 0; |
|
// Begining offset for each document. |
|
int32_t doc_offset = 0; |
|
// Start with first document and no offset. |
|
sample_idx[2 * sample_index] = doc_idx_index; |
|
sample_idx[2 * sample_index + 1] = doc_offset; |
|
++sample_index; |
|
|
|
while (sample_index <= num_samples) { |
|
// Start with a fresh sequence. |
|
int32_t remaining_seq_length = seq_length + 1; |
|
while (remaining_seq_length != 0) { |
|
// Get the document length. |
|
auto doc_id = doc_idx[doc_idx_index]; |
|
auto doc_length = sizes[doc_id] - doc_offset; |
|
// And add it to the current sequence. |
|
remaining_seq_length -= doc_length; |
|
// If we have more than a full sequence, adjust offset and set |
|
// remaining length to zero so we return from the while loop. |
|
// Note that -1 here is for the same reason we have -1 in |
|
// `_num_epochs` calculations. |
|
if (remaining_seq_length <= 0) { |
|
doc_offset += (remaining_seq_length + doc_length - 1); |
|
remaining_seq_length = 0; |
|
} else { |
|
// Otherwise, start from the begining of the next document. |
|
++doc_idx_index; |
|
doc_offset = 0; |
|
} |
|
} |
|
// Record the sequence. |
|
sample_idx[2 * sample_index] = doc_idx_index; |
|
sample_idx[2 * sample_index + 1] = doc_offset; |
|
++sample_index; |
|
} |
|
|
|
// Method to deallocate memory. |
|
py::capsule free_when_done(sample_idx, [](void* mem_) { |
|
int32_t* mem = reinterpret_cast<int32_t*>(mem_); |
|
delete[] mem; |
|
}); |
|
|
|
// Return the numpy array. |
|
const auto byte_size = sizeof(int32_t); |
|
return py::array(std::vector<int64_t>{num_samples + 1, 2}, // shape |
|
{2 * byte_size, byte_size}, // C-style contiguous strides |
|
sample_idx, // the data pointer |
|
free_when_done); // numpy array references |
|
} |
|
|
|
inline int32_t get_target_sample_len(const int32_t short_seq_ratio, |
|
const int32_t max_length, |
|
std::mt19937& rand32_gen) { |
|
/* Training sample length. */ |
|
if (short_seq_ratio == 0) { |
|
return max_length; |
|
} |
|
const auto random_number = rand32_gen(); |
|
if ((random_number % short_seq_ratio) == 0) { |
|
return 2 + random_number % (max_length - 1); |
|
} |
|
return max_length; |
|
} |
|
|
|
template <typename DocIdx> |
|
py::array build_mapping_impl(const py::array_t<int64_t>& docs_, |
|
const py::array_t<int32_t>& sizes_, |
|
const int32_t num_epochs, |
|
const uint64_t max_num_samples, |
|
const int32_t max_seq_length, |
|
const double short_seq_prob, const int32_t seed, |
|
const bool verbose, const int32_t min_num_sent) { |
|
/* Build a mapping of (start-index, end-index, sequence-length) where |
|
start and end index are the indices of the sentences in the sample |
|
and sequence-length is the target sequence length. |
|
*/ |
|
|
|
// Consistency checks. |
|
assert(num_epochs > 0); |
|
assert(max_seq_length > 1); |
|
assert(short_seq_prob >= 0.0); |
|
assert(short_seq_prob <= 1.0); |
|
assert(seed > 0); |
|
|
|
// Remove bound checks. |
|
auto docs = docs_.unchecked<1>(); |
|
auto sizes = sizes_.unchecked<1>(); |
|
|
|
// For efficiency, convert probability to ratio. Note: rand() generates int. |
|
int32_t short_seq_ratio = 0; |
|
if (short_seq_prob > 0) { |
|
short_seq_ratio = static_cast<int32_t>(round(1.0 / short_seq_prob)); |
|
} |
|
|
|
if (verbose) { |
|
const auto sent_start_index = docs[0]; |
|
const auto sent_end_index = docs[docs_.shape(0) - 1]; |
|
const auto num_sentences = sent_end_index - sent_start_index; |
|
cout << " using:" << endl << std::flush; |
|
cout << " number of documents: " << docs_.shape(0) - 1 |
|
<< endl |
|
<< std::flush; |
|
cout << " sentences range: [" << sent_start_index << ", " |
|
<< sent_end_index << ")" << endl |
|
<< std::flush; |
|
cout << " total number of sentences: " << num_sentences << endl |
|
<< std::flush; |
|
cout << " number of epochs: " << num_epochs << endl |
|
<< std::flush; |
|
cout << " maximum number of samples: " << max_num_samples << endl |
|
<< std::flush; |
|
cout << " maximum sequence length: " << max_seq_length << endl |
|
<< std::flush; |
|
cout << " short sequence probability: " << short_seq_prob << endl |
|
<< std::flush; |
|
cout << " short sequence ration (1/prob): " << short_seq_ratio << endl |
|
<< std::flush; |
|
cout << " seed: " << seed << endl |
|
<< std::flush; |
|
} |
|
|
|
// Mapping and it's length (1D). |
|
int64_t num_samples = -1; |
|
DocIdx* maps = NULL; |
|
|
|
// Perform two iterations, in the first iteration get the size |
|
// and allocate memory and in the second iteration populate the map. |
|
bool second = false; |
|
for (int32_t iteration = 0; iteration < 2; ++iteration) { |
|
// Set the seed so both iterations produce the same results. |
|
std::mt19937 rand32_gen(seed); |
|
|
|
// Set the flag on second iteration. |
|
second = (iteration == 1); |
|
|
|
// Counters: |
|
uint64_t empty_docs = 0; |
|
uint64_t one_sent_docs = 0; |
|
uint64_t long_sent_docs = 0; |
|
|
|
// Current map index. |
|
uint64_t map_index = 0; |
|
|
|
// For each epoch: |
|
for (int32_t epoch = 0; epoch < num_epochs; ++epoch) { |
|
if (map_index >= max_num_samples) { |
|
if (verbose && (!second)) { |
|
cout << " reached " << max_num_samples << " samples after " |
|
<< epoch << " epochs ..." << endl |
|
<< std::flush; |
|
} |
|
break; |
|
} |
|
// For each document: |
|
for (int32_t doc = 0; doc < (docs.shape(0) - 1); ++doc) { |
|
// Document sentences are in [sent_index_first, sent_index_last) |
|
const auto sent_index_first = docs[doc]; |
|
const auto sent_index_last = docs[doc + 1]; |
|
|
|
// At the begining of the document previous index is the |
|
// start index. |
|
auto prev_start_index = sent_index_first; |
|
|
|
// Remaining documents. |
|
auto num_remain_sent = sent_index_last - sent_index_first; |
|
|
|
// Some bookkeeping |
|
if ((epoch == 0) && (!second)) { |
|
if (num_remain_sent == 0) { |
|
++empty_docs; |
|
} |
|
if (num_remain_sent == 1) { |
|
++one_sent_docs; |
|
} |
|
} |
|
|
|
// Detect documents with long sentences. |
|
bool contains_long_sentence = false; |
|
if (num_remain_sent > 1) { |
|
for (auto sent_index = sent_index_first; sent_index < sent_index_last; |
|
++sent_index) { |
|
if (sizes[sent_index] > LONG_SENTENCE_LEN) { |
|
if ((epoch == 0) && (!second)) { |
|
++long_sent_docs; |
|
} |
|
contains_long_sentence = true; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// If we have more than two sentences. |
|
if ((num_remain_sent >= min_num_sent) && (!contains_long_sentence)) { |
|
// Set values. |
|
auto seq_len = int32_t{0}; |
|
auto num_sent = int32_t{0}; |
|
auto target_seq_len = get_target_sample_len( |
|
short_seq_ratio, max_seq_length, rand32_gen); |
|
|
|
// Loop through sentences. |
|
for (auto sent_index = sent_index_first; sent_index < sent_index_last; |
|
++sent_index) { |
|
// Add the size and number of sentences. |
|
seq_len += sizes[sent_index]; |
|
++num_sent; |
|
--num_remain_sent; |
|
|
|
// If we have reached the target length. |
|
// and if not only one sentence is left in the document. |
|
// and if we have at least two sentneces. |
|
// and if we have reached end of the document. |
|
if (((seq_len >= target_seq_len) && (num_remain_sent > 1) && |
|
(num_sent >= min_num_sent)) || |
|
(num_remain_sent == 0)) { |
|
// Check for overflow. |
|
if ((3 * map_index + 2) > std::numeric_limits<int64_t>::max()) { |
|
cout << "number of samples exceeded maximum " |
|
<< "allowed by type int64: " |
|
<< std::numeric_limits<int64_t>::max() << endl; |
|
throw std::overflow_error("Number of samples"); |
|
} |
|
|
|
// Populate the map. |
|
if (second) { |
|
const auto map_index_0 = 3 * map_index; |
|
maps[map_index_0] = static_cast<DocIdx>(prev_start_index); |
|
maps[map_index_0 + 1] = static_cast<DocIdx>(sent_index + 1); |
|
maps[map_index_0 + 2] = static_cast<DocIdx>(target_seq_len); |
|
} |
|
|
|
// Update indices / counters. |
|
++map_index; |
|
prev_start_index = sent_index + 1; |
|
target_seq_len = get_target_sample_len( |
|
short_seq_ratio, max_seq_length, rand32_gen); |
|
seq_len = 0; |
|
num_sent = 0; |
|
} |
|
|
|
} // for (auto sent_index=sent_index_first; ... |
|
} // if (num_remain_sent > 1) { |
|
} // for (int doc=0; doc < num_docs; ++doc) { |
|
} // for (int epoch=0; epoch < num_epochs; ++epoch) { |
|
|
|
if (!second) { |
|
if (verbose) { |
|
cout << " number of empty documents: " << empty_docs << endl |
|
<< std::flush; |
|
cout << " number of documents with one sentence: " << one_sent_docs |
|
<< endl |
|
<< std::flush; |
|
cout << " number of documents with long sentences: " << long_sent_docs |
|
<< endl |
|
<< std::flush; |
|
cout << " will create mapping for " << map_index << " samples" << endl |
|
<< std::flush; |
|
} |
|
assert(maps == NULL); |
|
assert(num_samples < 0); |
|
maps = new DocIdx[3 * map_index]; |
|
num_samples = static_cast<int64_t>(map_index); |
|
} |
|
|
|
} // for (int iteration=0; iteration < 2; ++iteration) { |
|
|
|
// Shuffle. |
|
// We need a 64 bit random number generator as we might have more |
|
// than 2 billion samples. |
|
std::mt19937_64 rand64_gen(seed + 1); |
|
for (auto i = (num_samples - 1); i > 0; --i) { |
|
const auto j = static_cast<int64_t>(rand64_gen() % (i + 1)); |
|
const auto i0 = 3 * i; |
|
const auto j0 = 3 * j; |
|
// Swap values. |
|
swap(maps[i0], maps[j0]); |
|
swap(maps[i0 + 1], maps[j0 + 1]); |
|
swap(maps[i0 + 2], maps[j0 + 2]); |
|
} |
|
|
|
// Method to deallocate memory. |
|
py::capsule free_when_done(maps, [](void* mem_) { |
|
DocIdx* mem = reinterpret_cast<DocIdx*>(mem_); |
|
delete[] mem; |
|
}); |
|
|
|
// Return the numpy array. |
|
const auto byte_size = sizeof(DocIdx); |
|
return py::array(std::vector<int64_t>{num_samples, 3}, // shape |
|
{3 * byte_size, byte_size}, // C-style contiguous strides |
|
maps, // the data pointer |
|
free_when_done); // numpy array references |
|
} |
|
|
|
py::array build_mapping(const py::array_t<int64_t>& docs_, |
|
const py::array_t<int>& sizes_, const int num_epochs, |
|
const uint64_t max_num_samples, |
|
const int max_seq_length, const double short_seq_prob, |
|
const int seed, const bool verbose, |
|
const int32_t min_num_sent) { |
|
if (sizes_.size() > std::numeric_limits<uint32_t>::max()) { |
|
if (verbose) { |
|
cout << " using uint64 for data mapping..." << endl << std::flush; |
|
} |
|
return build_mapping_impl<uint64_t>( |
|
docs_, sizes_, num_epochs, max_num_samples, max_seq_length, |
|
short_seq_prob, seed, verbose, min_num_sent); |
|
} else { |
|
if (verbose) { |
|
cout << " using uint32 for data mapping..." << endl << std::flush; |
|
} |
|
return build_mapping_impl<uint32_t>( |
|
docs_, sizes_, num_epochs, max_num_samples, max_seq_length, |
|
short_seq_prob, seed, verbose, min_num_sent); |
|
} |
|
} |
|
|
|
template <typename DocIdx> |
|
py::array build_blocks_mapping_impl( |
|
const py::array_t<int64_t>& docs_, const py::array_t<int32_t>& sizes_, |
|
const py::array_t<int32_t>& titles_sizes_, const int32_t num_epochs, |
|
const uint64_t max_num_samples, const int32_t max_seq_length, |
|
const int32_t seed, const bool verbose, const bool use_one_sent_blocks) { |
|
/* Build a mapping of (start-index, end-index, sequence-length) where |
|
start and end index are the indices of the sentences in the sample |
|
and sequence-length is the target sequence length. |
|
*/ |
|
|
|
// Consistency checks. |
|
assert(num_epochs > 0); |
|
assert(max_seq_length > 1); |
|
assert(seed > 0); |
|
|
|
// Remove bound checks. |
|
auto docs = docs_.unchecked<1>(); |
|
auto sizes = sizes_.unchecked<1>(); |
|
auto titles_sizes = titles_sizes_.unchecked<1>(); |
|
|
|
if (verbose) { |
|
const auto sent_start_index = docs[0]; |
|
const auto sent_end_index = docs[docs_.shape(0) - 1]; |
|
const auto num_sentences = sent_end_index - sent_start_index; |
|
cout << " using:" << endl << std::flush; |
|
cout << " number of documents: " << docs_.shape(0) - 1 |
|
<< endl |
|
<< std::flush; |
|
cout << " sentences range: [" << sent_start_index << ", " |
|
<< sent_end_index << ")" << endl |
|
<< std::flush; |
|
cout << " total number of sentences: " << num_sentences << endl |
|
<< std::flush; |
|
cout << " number of epochs: " << num_epochs << endl |
|
<< std::flush; |
|
cout << " maximum number of samples: " << max_num_samples << endl |
|
<< std::flush; |
|
cout << " maximum sequence length: " << max_seq_length << endl |
|
<< std::flush; |
|
cout << " seed: " << seed << endl |
|
<< std::flush; |
|
} |
|
|
|
// Mapping and its length (1D). |
|
int64_t num_samples = -1; |
|
DocIdx* maps = NULL; |
|
|
|
// Acceptable number of sentences per block. |
|
int min_num_sent = 2; |
|
if (use_one_sent_blocks) { |
|
min_num_sent = 1; |
|
} |
|
|
|
// Perform two iterations, in the first iteration get the size |
|
// and allocate memory and in the second iteration populate the map. |
|
bool second = false; |
|
for (int32_t iteration = 0; iteration < 2; ++iteration) { |
|
// Set the flag on second iteration. |
|
second = (iteration == 1); |
|
|
|
// Current map index. |
|
uint64_t map_index = 0; |
|
|
|
uint64_t empty_docs = 0; |
|
uint64_t one_sent_docs = 0; |
|
uint64_t long_sent_docs = 0; |
|
// For each epoch: |
|
for (int32_t epoch = 0; epoch < num_epochs; ++epoch) { |
|
// assign every block a unique id |
|
int32_t block_id = 0; |
|
|
|
if (map_index >= max_num_samples) { |
|
if (verbose && (!second)) { |
|
cout << " reached " << max_num_samples << " samples after " |
|
<< epoch << " epochs ..." << endl |
|
<< std::flush; |
|
} |
|
break; |
|
} |
|
// For each document: |
|
for (int32_t doc = 0; doc < (docs.shape(0) - 1); ++doc) { |
|
// Document sentences are in [sent_index_first, sent_index_last) |
|
const auto sent_index_first = docs[doc]; |
|
const auto sent_index_last = docs[doc + 1]; |
|
const auto target_seq_len = max_seq_length - titles_sizes[doc]; |
|
|
|
// At the begining of the document previous index is the |
|
// start index. |
|
auto prev_start_index = sent_index_first; |
|
|
|
// Remaining documents. |
|
auto num_remain_sent = sent_index_last - sent_index_first; |
|
|
|
// Some bookkeeping |
|
if ((epoch == 0) && (!second)) { |
|
if (num_remain_sent == 0) { |
|
++empty_docs; |
|
} |
|
if (num_remain_sent == 1) { |
|
++one_sent_docs; |
|
} |
|
} |
|
// Detect documents with long sentences. |
|
bool contains_long_sentence = false; |
|
if (num_remain_sent >= min_num_sent) { |
|
for (auto sent_index = sent_index_first; sent_index < sent_index_last; |
|
++sent_index) { |
|
if (sizes[sent_index] > LONG_SENTENCE_LEN) { |
|
if ((epoch == 0) && (!second)) { |
|
++long_sent_docs; |
|
} |
|
contains_long_sentence = true; |
|
break; |
|
} |
|
} |
|
} |
|
// If we have enough sentences and no long sentences. |
|
if ((num_remain_sent >= min_num_sent) && (!contains_long_sentence)) { |
|
// Set values. |
|
auto seq_len = int32_t{0}; |
|
auto num_sent = int32_t{0}; |
|
|
|
// Loop through sentences. |
|
for (auto sent_index = sent_index_first; sent_index < sent_index_last; |
|
++sent_index) { |
|
// Add the size and number of sentences. |
|
seq_len += sizes[sent_index]; |
|
++num_sent; |
|
--num_remain_sent; |
|
|
|
// If we have reached the target length. |
|
// and there are an acceptable number of sentences left |
|
// and if we have at least the minimum number of sentences. |
|
// or if we have reached end of the document. |
|
if (((seq_len >= target_seq_len) && |
|
(num_remain_sent >= min_num_sent) && |
|
(num_sent >= min_num_sent)) || |
|
(num_remain_sent == 0)) { |
|
// Populate the map. |
|
if (second) { |
|
const auto map_index_0 = 4 * map_index; |
|
// Each sample has 4 items: the starting sentence index, ending |
|
// sentence index, the index of the document from which the |
|
// block comes (used for fetching titles) and the unique id of |
|
// the block (used for creating block indexes) |
|
|
|
maps[map_index_0] = static_cast<DocIdx>(prev_start_index); |
|
maps[map_index_0 + 1] = static_cast<DocIdx>(sent_index + 1); |
|
maps[map_index_0 + 2] = static_cast<DocIdx>(doc); |
|
maps[map_index_0 + 3] = static_cast<DocIdx>(block_id); |
|
} |
|
|
|
// Update indices / counters. |
|
++map_index; |
|
++block_id; |
|
prev_start_index = sent_index + 1; |
|
seq_len = 0; |
|
num_sent = 0; |
|
} |
|
} // for (auto sent_index=sent_index_first; ... |
|
} // if (num_remain_sent > 1) { |
|
} // for (int doc=0; doc < num_docs; ++doc) { |
|
} // for (int epoch=0; epoch < num_epochs; ++epoch) { |
|
|
|
if (!second) { |
|
if (verbose) { |
|
cout << " number of empty documents: " << empty_docs << endl |
|
<< std::flush; |
|
cout << " number of documents with one sentence: " << one_sent_docs |
|
<< endl |
|
<< std::flush; |
|
cout << " number of documents with long sentences: " << long_sent_docs |
|
<< endl |
|
<< std::flush; |
|
cout << " will create mapping for " << map_index << " samples" << endl |
|
<< std::flush; |
|
} |
|
assert(maps == NULL); |
|
assert(num_samples < 0); |
|
maps = new DocIdx[4 * map_index]; |
|
num_samples = static_cast<int64_t>(map_index); |
|
} |
|
|
|
} // for (int iteration=0; iteration < 2; ++iteration) { |
|
|
|
// Shuffle. |
|
// We need a 64 bit random number generator as we might have more |
|
// than 2 billion samples. |
|
std::mt19937_64 rand64_gen(seed + 1); |
|
for (auto i = (num_samples - 1); i > 0; --i) { |
|
const auto j = static_cast<int64_t>(rand64_gen() % (i + 1)); |
|
const auto i0 = 4 * i; |
|
const auto j0 = 4 * j; |
|
// Swap values. |
|
swap(maps[i0], maps[j0]); |
|
swap(maps[i0 + 1], maps[j0 + 1]); |
|
swap(maps[i0 + 2], maps[j0 + 2]); |
|
swap(maps[i0 + 3], maps[j0 + 3]); |
|
} |
|
|
|
// Method to deallocate memory. |
|
py::capsule free_when_done(maps, [](void* mem_) { |
|
DocIdx* mem = reinterpret_cast<DocIdx*>(mem_); |
|
delete[] mem; |
|
}); |
|
|
|
// Return the numpy array. |
|
const auto byte_size = sizeof(DocIdx); |
|
return py::array(std::vector<int64_t>{num_samples, 4}, // shape |
|
{4 * byte_size, byte_size}, // C-style contiguous strides |
|
maps, // the data pointer |
|
free_when_done); // numpy array references |
|
} |
|
|
|
py::array build_blocks_mapping( |
|
const py::array_t<int64_t>& docs_, const py::array_t<int>& sizes_, |
|
const py::array_t<int>& titles_sizes_, const int num_epochs, |
|
const uint64_t max_num_samples, const int max_seq_length, const int seed, |
|
const bool verbose, const bool use_one_sent_blocks) { |
|
if (sizes_.size() > std::numeric_limits<uint32_t>::max()) { |
|
if (verbose) { |
|
cout << " using uint64 for data mapping..." << endl << std::flush; |
|
} |
|
return build_blocks_mapping_impl<uint64_t>( |
|
docs_, sizes_, titles_sizes_, num_epochs, max_num_samples, |
|
max_seq_length, seed, verbose, use_one_sent_blocks); |
|
} else { |
|
if (verbose) { |
|
cout << " using uint32 for data mapping..." << endl << std::flush; |
|
} |
|
return build_blocks_mapping_impl<uint32_t>( |
|
docs_, sizes_, titles_sizes_, num_epochs, max_num_samples, |
|
max_seq_length, seed, verbose, use_one_sent_blocks); |
|
} |
|
} |
|
|
|
PYBIND11_MODULE(helpers, m) { |
|
m.def("build_mapping", &build_mapping); |
|
m.def("build_blocks_mapping", &build_blocks_mapping); |
|
m.def("build_sample_idx", &build_sample_idx); |
|
m.def("build_blending_indices", &build_blending_indices); |
|
}
|
|
|