Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

96 lines
4.1 KiB

import torch
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.context.parallel_context import ParallelContext
from colossalai.legacy.core import global_context as gpc
from colossalai.logging import get_dist_logger
from .datasets.builder import build_train_valid_test_datasets
from .datasets.data_samplers import build_pretraining_data_loader
def cyclic_iter(iter):
while True:
for x in iter:
yield x
def build_train_valid_test_data_iterators(
train_iters, global_batch_size, eval_interval, eval_iters, dataloader_type="single", **kwargs
):
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
logger = get_dist_logger()
logger.info("> building train, validation, and test datasets ...", ranks=[0])
# Backward compatibility, assume fixed batch size.
# if iteration > 0 and consumed_train_samples == 0:
# assert train_samples is None, \
# 'only backward compatibility support for iteration-based training'
# consumed_train_samples = iteration * global_batch_size
# if iteration > 0 and consumed_valid_samples == 0:
# if train_samples is None:
# consumed_valid_samples = (iteration // eval_interval) * \
# eval_iters * global_batch_size
# Data loader only on rank 0 of each model parallel group.
if not gpc.is_initialized(ParallelMode.TENSOR) or gpc.get_local_rank(ParallelMode.TENSOR) == 0:
# Number of train/valid/test samples.
train_samples = train_iters * global_batch_size
eval_iters_ = (train_iters // eval_interval + 1) * eval_iters
test_iters = eval_iters
train_val_test_num_samples = [train_samples, eval_iters_ * global_batch_size, test_iters * global_batch_size]
logger.info(" > datasets target sizes (minimum size):")
logger.info(" train: {}".format(train_val_test_num_samples[0]), ranks=[0])
logger.info(" validation: {}".format(train_val_test_num_samples[1]), ranks=[0])
logger.info(" test: {}".format(train_val_test_num_samples[2]), ranks=[0])
# Build the datasets.
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
train_valid_test_num_samples=train_val_test_num_samples, **kwargs
)
# Build dataloaders.
dp_size = gpc.get_world_size(ParallelMode.DATA)
train_dataloader = build_pretraining_data_loader(
train_ds, consumed_samples=0, micro_batch_size=global_batch_size // dp_size
)
valid_dataloader = build_pretraining_data_loader(
valid_ds, consumed_samples=0, micro_batch_size=global_batch_size // dp_size
)
test_dataloader = build_pretraining_data_loader(test_ds, 0, micro_batch_size=global_batch_size // dp_size)
# Flags to know if we need to do training/validation/testing.
do_train = train_dataloader is not None and train_iters > 0
do_valid = valid_dataloader is not None and eval_iters > 0
do_test = test_dataloader is not None and eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = torch.cuda.LongTensor([int(do_train), int(do_valid), int(do_test)])
else:
flags = torch.cuda.LongTensor([0, 0, 0])
# Broadcast num tokens.
torch.distributed.broadcast(
flags, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], group=gpc.get_group(ParallelMode.TENSOR)
)
# Build iterators.
dl_type = dataloader_type
assert dl_type in ["single", "cyclic"]
if train_dataloader is not None:
train_data_iterator = iter(train_dataloader) if dl_type == "single" else iter(cyclic_iter(train_dataloader))
else:
train_data_iterator = None
if valid_dataloader is not None:
valid_data_iterator = iter(valid_dataloader) if dl_type == "single" else iter(cyclic_iter(valid_dataloader))
else:
valid_data_iterator = None
if test_dataloader is not None:
test_data_iterator = iter(test_dataloader) if dl_type == "single" else iter(cyclic_iter(test_dataloader))
else:
test_data_iterator = None
return train_data_iterator, valid_data_iterator, test_data_iterator