Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

77 lines
2.4 KiB

from collections import namedtuple
import psutil
import torch
import torch.distributed as dist
from colossalai.utils import get_current_device
_GLOBAL_CUDA_MEM_FRACTION = 1.0
_GLOBAL_CPU_MEM_CAPACITY = -1
# copy from PatrickStar
def _get_cpu_memory_info():
ps_mem_info = namedtuple("ps_mem_info", ["total", "free", "cached", "buffers", "used"])
try:
# psutil reads the memory info from /proc/memory_info,
# which results in returning the host memory instead of
# that of container.
# Here we try to read the container memory with method in:
# https://stackoverflow.com/a/46213331/5163915
mems = {}
with open("/sys/fs/cgroup/memory/memory.meminfo", "rb") as f:
for line in f:
fields = line.split()
mems[fields[0]] = int(fields[1]) * 1024
total = mems[b"MemTotal:"]
free = mems[b"MemFree:"]
cached = mems[b"Cached:"]
buffers = mems[b"Buffers:"]
used = total - free - cached - buffers
if used < 0:
used = total - free
mem_info = ps_mem_info(total=total, free=free, cached=cached, buffers=buffers, used=used)
except FileNotFoundError:
mems = psutil.virtual_memory()
mem_info = ps_mem_info(
total=mems.total,
free=mems.free,
cached=mems.cached,
buffers=mems.buffers,
used=mems.used,
)
return mem_info
def colo_device_memory_capacity(device: torch.device) -> int:
"""
Get the capacity of the memory of the device
Args:
device (torch.device): a device
Returns:
int: size in byte
"""
# TODO: add NPU support
assert isinstance(device, torch.device)
if device.type == "cpu":
# In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory.
return colo_get_cpu_memory_capacity() // dist.get_world_size()
if device.type == "cuda":
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
def colo_get_cpu_memory_capacity() -> int:
"""
Get the cpu memory capacity. We may not use all of it.
Returns:
int: _description_
"""
global _GLOBAL_CPU_MEM_CAPACITY
if _GLOBAL_CPU_MEM_CAPACITY == -1:
mem_info = _get_cpu_memory_info()
return mem_info.total
else:
return _GLOBAL_CPU_MEM_CAPACITY