mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
3.7 KiB
122 lines
3.7 KiB
from typing import Tuple, Union |
|
|
|
import torch |
|
|
|
from .stateful_tensor import StatefulTensor |
|
|
|
|
|
def is_storage_empty(tensor: torch.Tensor) -> bool: |
|
return tensor.storage().size() == 0 |
|
|
|
|
|
def free_storage(tensor: torch.Tensor) -> None: |
|
if not is_storage_empty(tensor): |
|
tensor.storage().resize_(0) |
|
|
|
|
|
def alloc_storage(tensor: torch.Tensor) -> None: |
|
if is_storage_empty(tensor): |
|
tensor.storage().resize_(tensor.numel()) |
|
|
|
|
|
def colo_tensor_mem_usage(tensor: Union[torch.Tensor, StatefulTensor]) -> Tuple[int, int]: |
|
if isinstance(tensor, StatefulTensor): |
|
t = tensor.payload |
|
elif isinstance(tensor, torch.Tensor): |
|
t = tensor |
|
else: |
|
return 0, 0 |
|
|
|
cuda_use, cpu_use = 0, 0 |
|
|
|
mem_use = t.storage().size() * t.element_size() |
|
if t.device.type == "cuda": |
|
cuda_use += mem_use |
|
elif t.device.type == "cpu": |
|
cpu_use += mem_use |
|
|
|
return cuda_use, cpu_use |
|
|
|
|
|
def colo_model_data_tensor_move( |
|
src_t: Union[StatefulTensor, torch.Tensor], tgt_t: Union[StatefulTensor, torch.Tensor] |
|
) -> None: |
|
""" |
|
A colossal API for model data tensor move. |
|
The src and target tensors could be resident on both CPU and GPU. |
|
|
|
NOTE() The source tensor payload will be removed after this function. |
|
|
|
The function will record the communication volume between CPU and GPU. |
|
Args: |
|
src_t (Union[StatefulTensor, torch.Tensor]): source tensor |
|
tgt_t (Union[StatefulTensor, torch.Tensor]): target tensor |
|
""" |
|
if isinstance(src_t, StatefulTensor): |
|
src_t_payload = src_t.payload |
|
else: |
|
src_t_payload = src_t.data |
|
src_dev = src_t_payload.device |
|
|
|
if isinstance(tgt_t, StatefulTensor): |
|
tgt_t_payload = tgt_t.payload |
|
else: |
|
tgt_t_payload = tgt_t.data |
|
|
|
tgt_t_payload.copy_(src_t_payload) |
|
|
|
# remove payload of src_t |
|
if isinstance(src_t, StatefulTensor): |
|
src_t.set_null() |
|
else: |
|
src_t.data = torch.empty(0, device=src_dev, dtype=src_t_payload.dtype) |
|
|
|
|
|
def colo_model_data_tensor_move_inline( |
|
t: Union[StatefulTensor, torch.Tensor], target_device: Union[torch.device, int] |
|
) -> None: |
|
""" |
|
move a tensor to the target_device |
|
Args: |
|
t (Union[StatefulTensor, torch.Tensor]): the tensor be moved |
|
target_device: a target device, if type is int, it the index of cuda card. |
|
""" |
|
if not isinstance(target_device, torch.device): |
|
target_device = torch.device(f"cuda:{target_device}") |
|
|
|
if isinstance(t, torch.Tensor): |
|
t.data = t.data.to(target_device) |
|
elif isinstance(t, StatefulTensor): |
|
t.move_to(target_device) |
|
else: |
|
raise TypeError(f"colo_model_data_tensor_move_inline dose not accept type {type(t)}") |
|
|
|
|
|
def colo_model_data_move_to_cpu(t: Union[StatefulTensor, torch.Tensor]) -> None: |
|
"""colo_model_data_move_to_cpu |
|
move a model data tensor from gpu to cpu |
|
Args: |
|
t (Union[StatefulTensor, torch.Tensor]): _description_ |
|
""" |
|
# TODO() optimize the tensor moving with non-blocking |
|
if isinstance(t, torch.Tensor): |
|
t.data = t.data.cpu() |
|
elif isinstance(t, StatefulTensor): |
|
t.move_to(torch.device("cpu")) |
|
else: |
|
raise TypeError(f"colo_model_data_move_to_cpu dose not accept type {type(t)}") |
|
|
|
|
|
def colo_model_tensor_clone(t: Union[StatefulTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor: |
|
""" |
|
Clone a model data tensor |
|
Args: |
|
t (Union[StatefulTensor, torch.Tensor]): a model data tensor |
|
target_device (torch.device): the target device |
|
Returns: |
|
torch.Tensor: a cloned torch tensor |
|
""" |
|
# TODO() rename this function |
|
colo_model_data_tensor_move_inline(t, target_device) |
|
t_payload = t.payload if isinstance(t, StatefulTensor) else t |
|
return t_payload
|
|
|