Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

122 lines
3.7 KiB

from typing import Tuple, Union
import torch
from .stateful_tensor import StatefulTensor
def is_storage_empty(tensor: torch.Tensor) -> bool:
return tensor.storage().size() == 0
def free_storage(tensor: torch.Tensor) -> None:
if not is_storage_empty(tensor):
tensor.storage().resize_(0)
def alloc_storage(tensor: torch.Tensor) -> None:
if is_storage_empty(tensor):
tensor.storage().resize_(tensor.numel())
def colo_tensor_mem_usage(tensor: Union[torch.Tensor, StatefulTensor]) -> Tuple[int, int]:
if isinstance(tensor, StatefulTensor):
t = tensor.payload
elif isinstance(tensor, torch.Tensor):
t = tensor
else:
return 0, 0
cuda_use, cpu_use = 0, 0
mem_use = t.storage().size() * t.element_size()
if t.device.type == "cuda":
cuda_use += mem_use
elif t.device.type == "cpu":
cpu_use += mem_use
return cuda_use, cpu_use
def colo_model_data_tensor_move(
src_t: Union[StatefulTensor, torch.Tensor], tgt_t: Union[StatefulTensor, torch.Tensor]
) -> None:
"""
A colossal API for model data tensor move.
The src and target tensors could be resident on both CPU and GPU.
NOTE() The source tensor payload will be removed after this function.
The function will record the communication volume between CPU and GPU.
Args:
src_t (Union[StatefulTensor, torch.Tensor]): source tensor
tgt_t (Union[StatefulTensor, torch.Tensor]): target tensor
"""
if isinstance(src_t, StatefulTensor):
src_t_payload = src_t.payload
else:
src_t_payload = src_t.data
src_dev = src_t_payload.device
if isinstance(tgt_t, StatefulTensor):
tgt_t_payload = tgt_t.payload
else:
tgt_t_payload = tgt_t.data
tgt_t_payload.copy_(src_t_payload)
# remove payload of src_t
if isinstance(src_t, StatefulTensor):
src_t.set_null()
else:
src_t.data = torch.empty(0, device=src_dev, dtype=src_t_payload.dtype)
def colo_model_data_tensor_move_inline(
t: Union[StatefulTensor, torch.Tensor], target_device: Union[torch.device, int]
) -> None:
"""
move a tensor to the target_device
Args:
t (Union[StatefulTensor, torch.Tensor]): the tensor be moved
target_device: a target device, if type is int, it the index of cuda card.
"""
if not isinstance(target_device, torch.device):
target_device = torch.device(f"cuda:{target_device}")
if isinstance(t, torch.Tensor):
t.data = t.data.to(target_device)
elif isinstance(t, StatefulTensor):
t.move_to(target_device)
else:
raise TypeError(f"colo_model_data_tensor_move_inline dose not accept type {type(t)}")
def colo_model_data_move_to_cpu(t: Union[StatefulTensor, torch.Tensor]) -> None:
"""colo_model_data_move_to_cpu
move a model data tensor from gpu to cpu
Args:
t (Union[StatefulTensor, torch.Tensor]): _description_
"""
# TODO() optimize the tensor moving with non-blocking
if isinstance(t, torch.Tensor):
t.data = t.data.cpu()
elif isinstance(t, StatefulTensor):
t.move_to(torch.device("cpu"))
else:
raise TypeError(f"colo_model_data_move_to_cpu dose not accept type {type(t)}")
def colo_model_tensor_clone(t: Union[StatefulTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor:
"""
Clone a model data tensor
Args:
t (Union[StatefulTensor, torch.Tensor]): a model data tensor
target_device (torch.device): the target device
Returns:
torch.Tensor: a cloned torch tensor
"""
# TODO() rename this function
colo_model_data_tensor_move_inline(t, target_device)
t_payload = t.payload if isinstance(t, StatefulTensor) else t
return t_payload