mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
7.1 KiB
197 lines
7.1 KiB
from typing import Any, Iterator, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from colossalai.legacy.tensor import ProcessGroup |
|
from colossalai.tensor import ColoParameter, ColoTensor |
|
from colossalai.utils.model.utils import InsertPostInitMethodToModuleSubClasses |
|
|
|
# find named_params includes replica |
|
|
|
|
|
def _named_params_with_replica( |
|
module: nn.Module, |
|
prefix: str = "", |
|
recurse: bool = True, |
|
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]: |
|
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)] |
|
|
|
for mod_prefix, mod in modules: |
|
for name, val in mod._parameters.items(): |
|
if val is None: |
|
continue |
|
name = mod_prefix + ("." if mod_prefix else "") + name |
|
yield name, val |
|
|
|
|
|
def _convert_to_coloparam( |
|
param: torch.nn.Parameter, |
|
device: torch.device, |
|
dtype=torch.float, |
|
default_pg: Optional[ProcessGroup] = None, |
|
default_dist_spec: Optional[Any] = None, |
|
) -> ColoParameter: |
|
if type(param) is ColoParameter: |
|
return param |
|
# detaching tensor is necessary for optimizers. |
|
requires_grad = param.requires_grad |
|
# param is the global tensor. |
|
|
|
if param.device.type == "meta": |
|
colo_param = ColoParameter(param, requires_grad=requires_grad) |
|
else: |
|
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad) |
|
|
|
# if default_shard_plan exists, shard the param during initialization. |
|
# This can reduce the model size after initialization. |
|
# NOTE() embedding usually can not be correctly sharded. So I use except to handle |
|
# the param that can not be sharded by the default plan |
|
if default_pg is not None: |
|
colo_param.set_process_group(default_pg) |
|
|
|
if default_dist_spec is not None: |
|
try: |
|
colo_param.set_dist_spec(default_dist_spec) |
|
except: |
|
pass |
|
return colo_param |
|
|
|
|
|
def ColoModulize(module): |
|
""" |
|
Replacing the parameters() and named_parameters() with our customized ones |
|
""" |
|
|
|
module._colo_visited = True |
|
|
|
|
|
class ColoInitContext(InsertPostInitMethodToModuleSubClasses): |
|
def __init__( |
|
self, |
|
device: torch.device = torch.device("cpu"), |
|
dtype: torch.dtype = torch.float, |
|
default_pg: Optional[ProcessGroup] = None, |
|
default_dist_spec=None, |
|
): |
|
""" |
|
Args: |
|
device (torch.device): the device where parameters initialized are resident. Defaults to torch.device('cpu'). |
|
dtype (torch.dtype): the dtype of parameters initialized. Defaults to torch.float. |
|
default_pg (ProcessGroup): the default process group for all initialized parameters. |
|
default_dist_spec: the default distributed specifications. |
|
""" |
|
super().__init__() |
|
self._device = device |
|
self._dtype = dtype |
|
|
|
self._register_colo_modules() |
|
self._default_pg = default_pg |
|
self._default_dist_spec = default_dist_spec |
|
|
|
def _register_colo_modules(self): |
|
from colossalai.legacy.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module |
|
|
|
register_colo_module(torch.nn.Linear, ColoLinear()) |
|
register_colo_module(torch.nn.Embedding, ColoEmbedding()) |
|
|
|
def _pre_context_exec(self): |
|
pass |
|
|
|
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs): |
|
""" |
|
The function to call at the end of the constructor of each module. |
|
FIXME(fjr) The module may be passed to this function multiple times? |
|
""" |
|
name_list = [] |
|
for name, param in _named_params_with_replica(module): |
|
if type(param) is ColoParameter: |
|
continue |
|
|
|
split = name.rfind(".") |
|
if split >= 0: # param in submodule |
|
module_name = name[:split] |
|
param_name = name[split + 1 :] |
|
else: |
|
module_name = "" # param in current module |
|
param_name = name |
|
name_list.append((module_name, param_name)) |
|
|
|
replaced_tensors = dict() # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference |
|
for module_name, param_name in name_list: |
|
submodule = module.get_submodule(module_name) |
|
param = submodule.get_parameter(param_name) |
|
if param in replaced_tensors: |
|
colo_param = replaced_tensors[param] |
|
else: |
|
colo_param = _convert_to_coloparam( |
|
param, self._device, self._dtype, self._default_pg, self._default_dist_spec |
|
) |
|
replaced_tensors[param] = colo_param |
|
delattr(submodule, param_name) |
|
setattr(submodule, param_name, colo_param) |
|
colo_param.shared_param_modules.append(submodule) |
|
|
|
param_number = 0 |
|
meta_param_number = 0 |
|
buffer_number = 0 |
|
meta_buffer_number = 0 |
|
|
|
for param in module.parameters(): |
|
param_number += 1 |
|
meta_param_number += param.device.type == "meta" |
|
|
|
for buffer in module.buffers(): |
|
buffer_number += 1 |
|
meta_buffer_number += buffer.device.type == "meta" |
|
|
|
if meta_param_number > 0 and meta_param_number != param_number: |
|
raise ValueError("Meta parameters and valued parameters can not be in the same model") |
|
if meta_buffer_number > 0 and meta_buffer_number != buffer_number: |
|
raise ValueError("Meta buffers and valued buffers can not be in the same model") |
|
|
|
if meta_buffer_number == 0: |
|
for buffer in module.buffers(): |
|
buffer.data = buffer.data.to(device=self._device) |
|
|
|
|
|
def post_process_colo_init_ctx( |
|
model: torch.nn.Module, |
|
device: torch.device = torch.device("cpu"), |
|
dtype: torch.dtype = torch.float, |
|
default_pg: Optional[ProcessGroup] = None, |
|
default_dist_spec=None, |
|
): |
|
"""post_process_colo_init_ctx |
|
|
|
This function is called after `ColoInitContext`. |
|
|
|
Args: |
|
model (torch.nn.module): the model |
|
device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu'). |
|
dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float. |
|
default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Indicates a DP-only process group. |
|
default_dist_spec (Any, optional): default dist spec of params. Defaults to None. |
|
|
|
Raises: |
|
RuntimeError: raise error if |
|
""" |
|
|
|
torch_params = [] |
|
for n, p in model.named_parameters(): |
|
if not isinstance(p, ColoParameter): |
|
# print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter") |
|
torch_params.append((n, p)) |
|
|
|
for n, param in torch_params: |
|
name_list = n.split(".") |
|
module = model |
|
for i in range(len(name_list) - 1): |
|
module = module._modules[name_list[i]] |
|
delattr(module, name_list[-1]) |
|
setattr(module, name_list[-1], _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec)) |
|
|
|
del torch_params |
|
for n, p in model.named_parameters(): |
|
if not isinstance(p, ColoTensor): |
|
raise RuntimeError
|
|
|