mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
6.7 KiB
197 lines
6.7 KiB
"""
|
|
Utils for model inference
|
|
"""
|
|
|
|
import math
|
|
import os
|
|
import re
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
from diffusers import DiffusionPipeline
|
|
from torch import nn
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.testing import free_port
|
|
|
|
logger = get_dist_logger(__name__)
|
|
|
|
|
|
def init_to_get_rotary(self, base=10000, use_elem=False):
|
|
"""
|
|
This function initializes the rotary positional embedding, it is compatible for all models and is called in ShardFormer
|
|
Args:
|
|
self : Model that holds the rotary positional embedding
|
|
base : calculation arg
|
|
use_elem : activated when using chatglm-based models
|
|
"""
|
|
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
|
|
if not hasattr(self.config, "rope_scaling"):
|
|
rope_scaling_factor = 1.0
|
|
else:
|
|
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
|
|
|
|
if hasattr(self.config, "max_sequence_length"):
|
|
max_seq_len = self.config.max_sequence_length
|
|
elif hasattr(self.config, "max_position_embeddings"):
|
|
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
|
|
else:
|
|
max_seq_len = 2048 * rope_scaling_factor
|
|
base = float(base)
|
|
|
|
# NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
|
ntk_alpha = os.environ.get("INFER_NTK_ALPHA", None)
|
|
|
|
if ntk_alpha is not None:
|
|
ntk_alpha = float(ntk_alpha)
|
|
assert ntk_alpha >= 1, "NTK alpha must be greater than or equal to 1"
|
|
if ntk_alpha > 1:
|
|
print(f"Note: NTK enabled, alpha set to {ntk_alpha}")
|
|
max_seq_len *= ntk_alpha
|
|
base = base * (ntk_alpha ** (self.head_dim_ / (self.head_dim_ - 2))) # Base change formula
|
|
|
|
n_elem = self.config.head_dim_
|
|
if use_elem:
|
|
n_elem //= 2
|
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem))
|
|
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
|
|
freqs = torch.outer(t, inv_freq)
|
|
|
|
self._cos_cached = torch.cos(freqs).to(self.dtype).cuda()
|
|
self._sin_cached = torch.sin(freqs).to(self.dtype).cuda()
|
|
|
|
|
|
def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]:
|
|
"""
|
|
Check whether the checkpoint has an index file.
|
|
|
|
Args:
|
|
checkpoint_path (str): path to the checkpoint.
|
|
|
|
Returns:
|
|
Tuple[bool, Optional[Path]]: a tuple of (has_index_file, index_file_path)
|
|
"""
|
|
checkpoint_path = Path(checkpoint_path)
|
|
if checkpoint_path.is_file():
|
|
# check if it is .index.json
|
|
reg = re.compile("(.*?).index((\..*)?).json")
|
|
if reg.fullmatch(checkpoint_path.name) is not None:
|
|
return True, checkpoint_path
|
|
else:
|
|
return False, None
|
|
elif checkpoint_path.is_dir():
|
|
index_files = list(checkpoint_path.glob("*.index.*json"))
|
|
|
|
for index_file in index_files:
|
|
if "safetensors" in index_file.__str__():
|
|
return True, index_file.__str__() # return the safetensors file first
|
|
|
|
if len(index_files) == 1:
|
|
return True, index_files[0]
|
|
else:
|
|
assert (
|
|
len(index_files) == 1
|
|
), f"Expected to find one .index.json file in {checkpoint_path}, but found {len(index_files)}"
|
|
return False, None
|
|
else:
|
|
raise RuntimeError(f"Invalid checkpoint path {checkpoint_path}. Expected a file or a directory.")
|
|
|
|
|
|
def get_model_size(model: nn.Module):
|
|
"""Calculates the total size of the model weights (including biases) in bytes.
|
|
Args:
|
|
model: The PyTorch model to analyze.
|
|
Returns:
|
|
The total size of the model weights in bytes.
|
|
"""
|
|
total_size = 0
|
|
for key, param in model.named_parameters():
|
|
total_size += param.element_size() * param.numel()
|
|
return total_size / (1024**3)
|
|
|
|
|
|
def find_available_ports(num: int):
|
|
try:
|
|
free_ports = [free_port() for i in range(num)]
|
|
except OSError as e:
|
|
print(f"An OS error occurred: {e}")
|
|
raise RuntimeError("Error finding available ports")
|
|
return free_ports
|
|
|
|
|
|
def get_alibi_slopes(num_heads: int, device: torch.device) -> torch.Tensor:
|
|
"""
|
|
Alibi slopes calculation adapted from https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/bloom/modeling_bloom.py#L57
|
|
|
|
Args:
|
|
num_heads (int): The number of attention heads.
|
|
device (torch.device): The device to use.
|
|
|
|
Returns:
|
|
torch.Tensor: The Alibi slopes.
|
|
"""
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
|
base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32, device=device)
|
|
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32, device=device)
|
|
slopes = torch.pow(base, powers)
|
|
if closest_power_of_2 != num_heads:
|
|
extra_base = torch.tensor(
|
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32, device=device
|
|
)
|
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
|
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=torch.int32, device=device)
|
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
return slopes
|
|
|
|
|
|
def can_use_flash_attn2(dtype: torch.dtype) -> bool:
|
|
"""
|
|
Check flash attention2 availability.
|
|
"""
|
|
if dtype not in (torch.float16, torch.bfloat16):
|
|
return False
|
|
|
|
try:
|
|
from flash_attn import flash_attn_varlen_func # noqa
|
|
|
|
return True
|
|
except ImportError:
|
|
logger.warning(f"flash_attn2 has not been installed yet, we will use triton flash attn instead.")
|
|
return False
|
|
|
|
|
|
class ModelType(Enum):
|
|
DIFFUSION_MODEL = "Diffusion Model"
|
|
LLM = "Large Language Model (LLM)"
|
|
UNKNOWN = "Unknown Model Type"
|
|
|
|
|
|
def get_model_type(model_or_path: Union[nn.Module, str, DiffusionPipeline]):
|
|
if isinstance(model_or_path, DiffusionPipeline):
|
|
return ModelType.DIFFUSION_MODEL
|
|
elif isinstance(model_or_path, nn.Module):
|
|
return ModelType.LLM
|
|
elif isinstance(model_or_path, str):
|
|
try:
|
|
from transformers import AutoConfig
|
|
|
|
hf_config = AutoConfig.from_pretrained(model_or_path, trust_remote_code=True)
|
|
return ModelType.LLM
|
|
except:
|
|
"""
|
|
model type is not `ModelType.LLM`
|
|
"""
|
|
|
|
try:
|
|
DiffusionPipeline.load_config(model_or_path)
|
|
return ModelType.DIFFUSION_MODEL
|
|
except:
|
|
"""
|
|
model type is not `ModelType.DIFFUSION_MODEL`
|
|
"""
|
|
else:
|
|
return ModelType.UNKNOWN
|