mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
801 lines
29 KiB
801 lines
29 KiB
# coding=utf-8 |
|
import os |
|
import re |
|
from collections import abc as container_abcs |
|
from collections import defaultdict |
|
from itertools import chain |
|
from pathlib import Path |
|
from typing import Iterator, List, Mapping, Optional, OrderedDict, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from packaging.version import Version |
|
from torch.optim import Optimizer |
|
from torch.utils._pytree import tree_map |
|
|
|
from colossalai.tensor.d_tensor import ( |
|
is_customized_distributed_tensor, |
|
is_distributed_tensor, |
|
to_global, |
|
to_global_for_customized_distributed_tensor, |
|
) |
|
|
|
SAFE_WEIGHTS_NAME = "model.safetensors" |
|
WEIGHTS_NAME = "pytorch_model.bin" |
|
STATES_NAME = "pytorch_optim.bin" |
|
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json" |
|
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json" |
|
STATES_INDEX_NAME = "pytorch_optim.bin.index.json" |
|
GROUP_FILE_NAME = "pytorch_optim_group.bin" |
|
|
|
# ====================================== |
|
# General helper functions |
|
# ====================================== |
|
|
|
|
|
def calculate_tensor_size(tensor: torch.Tensor) -> float: |
|
""" |
|
Calculate the size of a parameter in MB. Used to compute whether a group of params exceed the shard size. |
|
If so, a new shard should be created. |
|
|
|
Args: |
|
tensor (torch.Tensor): the tensor to calculate size for. |
|
|
|
Returns: |
|
float: size of the tensor in MB. |
|
""" |
|
return tensor.numel() * tensor.element_size() / 1024 / 1024 |
|
|
|
|
|
def is_safetensors_available() -> bool: |
|
""" |
|
Check whether safetensors is available. |
|
|
|
Returns: |
|
bool: whether safetensors is available. |
|
""" |
|
try: |
|
return True |
|
except ImportError: |
|
return False |
|
|
|
|
|
def is_dtensor_checkpoint(checkpoint_file_path: str) -> bool: |
|
""" |
|
Check whether the checkpoint file is a dtensor checkpoint. |
|
|
|
Args: |
|
checkpoint_file_path (str): path to the checkpoint file. |
|
|
|
Returns: |
|
bool: whether the checkpoint file is a dtensor checkpoint. |
|
""" |
|
if checkpoint_file_path.endswith(".*.safetensors") or checkpoint_file_path.endswith(".*.bin"): |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def is_safetensor_checkpoint(checkpoint_file_path: str) -> bool: |
|
""" |
|
Check whether the checkpoint file is a safetensor checkpoint. |
|
|
|
Args: |
|
checkpoint_file_path (str): path to the checkpoint file. |
|
|
|
Returns: |
|
bool: whether the checkpoint file is a safetensor checkpoint. |
|
""" |
|
if checkpoint_file_path.endswith(".safetensors"): |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def search_tp_partition_dim(current_shape: torch.Size, original_shape: torch.Size, tp_size: int) -> Optional[int]: |
|
""" |
|
Given the current shape of parameter and the shape of parameter before sharding, |
|
return the dimension along which the parameter is sharded when using tensor parallel. |
|
If tensor parallel is not used, return None. |
|
|
|
Args: |
|
current_shape (torch.Size): The current shape of parameter after sharding. |
|
original_shape (torch.Size): The shape of parameter before sharding. |
|
tp_size (int): The size of tp group. |
|
|
|
Returns: |
|
Optional[int]: The dimension along which parameter is partitioned. |
|
""" |
|
partition_dim = None |
|
for dim, length in enumerate(original_shape): |
|
if length > current_shape[dim]: |
|
partition_dim = dim |
|
break |
|
if partition_dim is not None: |
|
assert ( |
|
original_shape[partition_dim] == tp_size * current_shape[partition_dim] |
|
), f"The parameter isn't evenly distributed among tensor parallel group: \ |
|
shape before sharding {original_shape}, shape after sharding {current_shape}" |
|
|
|
return partition_dim |
|
|
|
|
|
def search_padding_dim(global_shape: torch.Size, original_shape: torch.Size) -> Optional[int]: |
|
padding_dim = None |
|
for dim, length in enumerate(global_shape): |
|
if length > original_shape[dim]: |
|
padding_dim = dim |
|
break |
|
return padding_dim |
|
|
|
|
|
# ====================================== |
|
# Helper classes and functions for saving shard file |
|
# ====================================== |
|
|
|
|
|
class StateDictSharder: |
|
def __init__(self, size_per_shard: int) -> None: |
|
self.max_shard_size = size_per_shard |
|
self.current_block = OrderedDict() |
|
self.current_block_size = 0 |
|
|
|
def append_param(self, name: str, tensor: torch.Tensor) -> Tuple[Optional[OrderedDict], int]: |
|
tensor_size = calculate_tensor_size(tensor) |
|
ret_block = None |
|
ret_block_size = 0 |
|
|
|
# before we return the current block and create a new block, |
|
# we need to ensure that the current block is not empty |
|
if self.current_block_size + tensor_size > self.max_shard_size and self.current_block_size > 0: |
|
ret_block = self.current_block |
|
ret_block_size = self.current_block_size |
|
self.current_block = OrderedDict() |
|
self.current_block_size = 0 |
|
|
|
self.current_block[name] = tensor |
|
self.current_block_size += tensor_size |
|
return ret_block, ret_block_size |
|
|
|
def append_optim_state(self, param_id: int, state: OrderedDict) -> Tuple[Optional[OrderedDict], int]: |
|
# A state might contain more than one tensors. |
|
# e.g. each Adam state includes: 'step', 'exp_avg', 'exp_avg_sq' |
|
state_size = 0 |
|
isDTensor = False |
|
for state_tensor in state.values(): |
|
# When state_tensor is not of Tensor class, |
|
# e.g., a SGD optimizer with momentum set to 0 can have None as state |
|
# The calculation of tensor size should be skipped to avoid error. |
|
if not isinstance(state_tensor, torch.Tensor): |
|
continue |
|
|
|
# If the states are stored as DTensors, mark isDTensor as true. |
|
if is_distributed_tensor(state_tensor): |
|
isDTensor = True |
|
state_size += calculate_tensor_size(state_tensor) |
|
|
|
ret_block = None |
|
ret_block_size = 0 |
|
|
|
# directly return if state is stored as distributed tensor |
|
if isDTensor: |
|
return ret_block, ret_block_size |
|
|
|
# before we return the current block and create a new block, |
|
# we need to ensure that the current block is not empty |
|
if self.current_block_size + state_size > self.max_shard_size and self.current_block_size > 0: |
|
ret_block = self.current_block |
|
ret_block_size = self.current_block_size |
|
self.current_block = OrderedDict() |
|
self.current_block_size = 0 |
|
|
|
self.current_block[param_id] = state |
|
self.current_block_size += state_size |
|
return ret_block, ret_block_size |
|
|
|
|
|
def gather_distributed_param(param: torch.Tensor, keep_vars: bool = False) -> torch.Tensor: |
|
""" |
|
Gather the complete parameter for saving if passed in param is distributed under tp setting. |
|
|
|
Args: |
|
param (torch.Tensor): A model parameter, might be d_tensor. |
|
keep_vars (bool, optional): Whether to return the parameter in calculation graph. Defaults to False. |
|
|
|
Returns: |
|
torch.Tensor: the complete parameter |
|
""" |
|
param_ = param if keep_vars else param.detach() |
|
if is_distributed_tensor(param_): |
|
return to_global(param_) |
|
elif is_customized_distributed_tensor(param_): |
|
return to_global_for_customized_distributed_tensor(param_) |
|
else: |
|
return param_ |
|
|
|
|
|
def save_state_dict_shards( |
|
sharded_state_dict: Iterator[Tuple[OrderedDict, int]], |
|
checkpoint: str, |
|
index_file: "CheckpointIndexFile", |
|
base_filename: str, |
|
is_master: bool, |
|
use_safetensors: bool = False, |
|
use_pp_format: bool = False, |
|
) -> int: |
|
""" |
|
Save sharded state dict only on master rank, this method can be used by both model and optimizer states. |
|
Args: |
|
sharded_state_dict (Iterator[Tuple[OrderedDict, int]]): a generator of shards, each shard contains state dict and shard size. |
|
checkpoint (str): The path of checkpoint directory as string. |
|
index_file (CheckpointIndexFile): The index file object to be updated. |
|
base_filename (str): Decides the prefix of filenames of shards. |
|
is_master (bool): Whether current rank is main process. |
|
use_safetensors (bool, optional): Whether to use safetensors to save checkpoint. Defaults to False. |
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False. |
|
|
|
Returns: |
|
int: the total size of shards |
|
""" |
|
|
|
total_size = 0 |
|
shard_filenames = [] |
|
for idx, shard_pair in enumerate(sharded_state_dict): |
|
shard, current_size = shard_pair |
|
# Just loop over the sharder and gather to other ranks if not master |
|
if not is_master: |
|
del shard |
|
continue |
|
shard_file = get_shard_filename(base_filename, idx) |
|
total_size = total_size + current_size |
|
for key in shard.keys(): |
|
index_file.append_weight_map(key, shard_file) |
|
checkpoint_file_path = os.path.join(checkpoint, shard_file) |
|
|
|
# Only save on master rank. |
|
save_state_dict(shard, checkpoint_file_path, use_safetensors=use_safetensors) |
|
shard_filenames.append(shard_file) |
|
del shard |
|
|
|
# Clean folder, deleted unneeded files. |
|
clean_folder(checkpoint, base_filename, shard_filenames, is_master=is_master, use_pp_format=use_pp_format) |
|
|
|
return total_size |
|
|
|
|
|
def shard_model_checkpoint(state_dict: torch.Tensor, max_shard_size: int = 1024) -> Iterator[Tuple[OrderedDict, int]]: |
|
""" |
|
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a |
|
given size. |
|
""" |
|
state_dict_sharder = StateDictSharder(max_shard_size) |
|
|
|
for key, weight in state_dict.items(): |
|
if not is_distributed_tensor(weight): |
|
block, block_size = state_dict_sharder.append_param(key, weight) |
|
|
|
if block != None: |
|
yield block, block_size |
|
|
|
# Return the last block in sharder. |
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size |
|
|
|
|
|
def shard_optimizer_checkpoint(state_dict: dict, max_shard_size: int = 1024) -> Iterator[Tuple[OrderedDict, int]]: |
|
""" |
|
Splits an optimizer state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a |
|
given size. |
|
""" |
|
|
|
# Only split state_dict['state']; state_dict['param_group'] is not considered in this function. |
|
states = state_dict["state"] |
|
state_dict_sharder = StateDictSharder(max_shard_size) |
|
|
|
for param_id, state in states.items(): |
|
block, block_size = state_dict_sharder.append_optim_state(param_id, state) |
|
if block != None: |
|
yield block, block_size |
|
|
|
# Return the last block in sharder. |
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size |
|
|
|
|
|
# ====================================== |
|
# Helper functions for saving state dict |
|
# ====================================== |
|
|
|
|
|
def save_state_dict(state_dict: dict, checkpoint_file_path: str, use_safetensors: bool) -> None: |
|
""" |
|
Save state dict to checkpoint. |
|
|
|
Args: |
|
state_dict (dict): state dict. |
|
checkpoint_file_path (str): path to the checkpoint file. |
|
use_safetensors (bool): whether to use safetensors to save the checkpoint. |
|
""" |
|
# Move all tensors in the state_dict to CPU before saving to avoid serialization issues |
|
state_dict_cpu = tree_map(lambda x: x.data.cpu() if torch.is_tensor(x) else x, state_dict) |
|
|
|
if use_safetensors: |
|
assert is_safetensors_available(), "safetensors is not available." |
|
assert checkpoint_file_path.endswith( |
|
".safetensors" |
|
), "safetensors only supports .safetensors suffix for checkpoint file." |
|
from safetensors.torch import save_file as safe_save_file |
|
|
|
safe_save_file(state_dict_cpu, checkpoint_file_path, metadata={"format": "pt"}) |
|
else: |
|
torch.save(state_dict_cpu, checkpoint_file_path) |
|
|
|
|
|
def save_param_groups(state_dict: dict, group_file_path: str) -> None: |
|
""" |
|
Save information of param_groups to given file path. |
|
|
|
Args: |
|
state_dict (dict): state dict. |
|
group_file_path (str): path to the group file. |
|
""" |
|
param_groups = state_dict["param_groups"] |
|
torch.save(param_groups, group_file_path) |
|
|
|
|
|
def clean_folder( |
|
checkpoint_path: str, |
|
weights_name: str, |
|
shard_filenames: List[str], |
|
is_master: bool = True, |
|
use_pp_format: bool = False, |
|
): |
|
""" |
|
Clean the unneeded files in checkpoint directory after shards of state_dict have been saved. |
|
|
|
Args: |
|
checkpoint_path (str): Path to the checkpoint directory. |
|
weights_name (str): Decides the prefix of filenames of weight shards. |
|
shard_filenames (List[str]): The list of saved shard filenames which should not be removed. |
|
is_master (bool, optional): Whether current rank is main process. Defaults to True. |
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False. |
|
|
|
""" |
|
if is_master: |
|
for filename in os.listdir(checkpoint_path): |
|
full_filename = os.path.join(checkpoint_path, filename) |
|
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "") |
|
filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "") |
|
if not use_pp_format: |
|
reg = re.compile(r"(.*?)-\d{5}") |
|
else: |
|
# When this checkpoint is created by pipeline parallel process, the pattern is a little different. |
|
reg = re.compile(r"(.*?)-stage-\d{5}-shard-\d{5}") |
|
if ( |
|
filename.startswith(weights_no_suffix) |
|
and os.path.isfile(full_filename) |
|
and filename not in shard_filenames |
|
and reg.fullmatch(filename_no_suffix) is not None |
|
): |
|
os.remove(full_filename) |
|
|
|
|
|
def save_config_file(model: nn.Module, checkpoint_path: str, is_master: bool = True): |
|
""" |
|
Save config.json/generation_config.json if model is a Huggingface pretrained model. |
|
This method can only be called when a model is saved in a sharded way. |
|
|
|
Args: |
|
model (nn.Module): The model whose config should be saved if it's a huggingface model. |
|
checkpoint_path (str): Path to the checkpoint directory. |
|
is_master (bool): Whether current rank is main process. |
|
""" |
|
try: |
|
from transformers.modeling_utils import PreTrainedModel, get_parameter_dtype |
|
from transformers.modeling_utils import unwrap_model as unwrap_huggingface_model |
|
except ImportError: |
|
return |
|
if not isinstance(model, PreTrainedModel): |
|
return |
|
|
|
model = unwrap_huggingface_model(model) |
|
|
|
# save the string version of dtype to the config, e.g. convert torch.float32 => "float32" |
|
dtype = get_parameter_dtype(model) |
|
model.config.torch_dtype = str(dtype).split(".")[1] |
|
|
|
# Attach architecture to the config |
|
model.config.architectures = [model.__class__.__name__] |
|
|
|
# Save the config |
|
if is_master: |
|
model.config.save_pretrained(checkpoint_path) |
|
if model.can_generate(): |
|
model.generation_config.save_pretrained(checkpoint_path) |
|
|
|
|
|
def save_dtensor(name: str, tensor: torch.Tensor, index_file: "CheckpointIndexFile", use_safetensors: bool) -> None: |
|
""" |
|
Save distributed tensor to checkpoint. This checkpoint will be a dictionary which contains |
|
only one tensor. |
|
|
|
Args: |
|
tensor (Tensor): tensor to be saved. |
|
index_file (CheckpointIndexFile): path to the checkpoint file. |
|
size_per_shard (int): size per shard in MB. |
|
""" |
|
root_path = index_file.root_path |
|
output_root_path = root_path.joinpath("dtensor") |
|
|
|
# create directory |
|
output_root_path.mkdir(exist_ok=True) |
|
|
|
# save tensor to this directory |
|
# TODO(YuliangLiu): get index of the tensor shard |
|
# e.g. index = |
|
index = 0 |
|
|
|
# save tensor to file |
|
ckpt_file_name = generate_dtensor_file_name(name, index, use_safetensors) |
|
ckpt_file_path = output_root_path.joinpath(ckpt_file_name) |
|
|
|
# dtensor ckpt file always contains only one tensor |
|
state_dict = {name: tensor} |
|
save_state_dict(state_dict, str(ckpt_file_path), use_safetensors) |
|
|
|
# update the weight map |
|
# * means all shards |
|
ckpt_file_name_in_weight_map = "dtensor/" + generate_dtensor_file_name(name, "*", use_safetensors) |
|
index_file.append_weight_map(name, ckpt_file_name_in_weight_map) |
|
|
|
|
|
def get_checkpoint_file_suffix(use_safetensors: bool) -> str: |
|
""" |
|
Get checkpoint file suffix. |
|
|
|
Args: |
|
use_safetensors (bool): whether to use safetensors to save the checkpoint. |
|
|
|
Returns: |
|
str: checkpoint file suffix. |
|
""" |
|
if use_safetensors: |
|
return ".safetensors" |
|
else: |
|
return ".bin" |
|
|
|
|
|
def generate_checkpoint_shard_file_name( |
|
index: int, total_number: int, use_safetensors: bool, prefix: str = None |
|
) -> str: |
|
""" |
|
Generate checkpoint shard file name. |
|
|
|
Args: |
|
index (int): index of the shard. |
|
total_number (int): total number of shards. |
|
use_safetensors (bool): whether to use safetensors to save the checkpoint. |
|
prefix (str): prefix of the shard file name. Default: None. |
|
|
|
Returns: |
|
str: checkpoint shard file name. |
|
""" |
|
suffix = get_checkpoint_file_suffix(use_safetensors) |
|
|
|
if prefix is None: |
|
return f"{index:05d}-of-{total_number:05d}.{suffix}" |
|
else: |
|
return f"{prefix}-{index:05d}-of-{total_number:05d}.{suffix}" |
|
|
|
|
|
def generate_dtensor_file_name(param_name: str, index: int, use_safetensors: bool) -> str: |
|
""" |
|
Generate dtensor file name. |
|
|
|
Args: |
|
param_name (str): name of the distributed parameter. |
|
index (int): index of the shard. |
|
use_safetensors (bool): whether to use safetensors to save the checkpoint. |
|
|
|
Returns: |
|
str: dtensor file name. |
|
""" |
|
suffix = get_checkpoint_file_suffix(use_safetensors) |
|
return f"{param_name}.{index}.{suffix}" |
|
|
|
|
|
# ======================================== |
|
# Helper functions for loading state dict |
|
# ======================================== |
|
|
|
|
|
def load_shard_state_dict(checkpoint_file: Path, use_safetensors: bool = False): |
|
""" |
|
load shard state dict into model |
|
""" |
|
if use_safetensors and not checkpoint_file.suffix == ".safetensors": |
|
raise Exception("load the model using `safetensors`, but no file endwith .safetensors") |
|
if use_safetensors: |
|
from safetensors.torch import load_file as safe_load_file |
|
from safetensors.torch import safe_open |
|
|
|
with safe_open(checkpoint_file, framework="pt") as f: |
|
metadata = f.metadata() |
|
if metadata["format"] != "pt": |
|
raise NotImplementedError( |
|
f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet." |
|
) |
|
return safe_load_file(checkpoint_file) |
|
else: |
|
return torch.load(checkpoint_file, map_location=torch.device("cpu")) |
|
|
|
|
|
def load_state_dict_into_model( |
|
model: nn.Module, state_dict: torch.Tensor, missing_keys: List, strict: bool = False, load_sub_module: bool = True |
|
): |
|
r"""Copies parameters and buffers from :attr:`state_dict` into |
|
this module and its descendants. |
|
|
|
Args: |
|
state_dict (dict): a dict containing parameters and |
|
persistent buffers. |
|
""" |
|
if not isinstance(state_dict, Mapping): |
|
raise TypeError("Expected state_dict to be dict-like, got {}.".format(type(state_dict))) |
|
|
|
unexpected_keys: List[str] = [] |
|
sub_missing_keys: List[str] = [] |
|
error_msgs: List[str] = [] |
|
|
|
# copy state_dict so _load_from_state_dict can modify it |
|
metadata = getattr(state_dict, "_metadata", None) |
|
state_dict = OrderedDict(state_dict) |
|
if metadata is not None: |
|
state_dict._metadata = metadata |
|
|
|
def load(module: nn.Module, state_dict, prefix="", load_sub_module: bool = True): |
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) |
|
args = (state_dict, prefix, local_metadata, True, sub_missing_keys, [], error_msgs) |
|
# Parameters of module and children will start with prefix. We can exit early if there are none in this |
|
# state_dict |
|
if len([key for key in state_dict if key.startswith(prefix)]) > 0: |
|
module._load_from_state_dict(*args) |
|
if load_sub_module: |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
load(child, state_dict, prefix + name + ".") |
|
|
|
load(model, state_dict, "", load_sub_module) |
|
del load |
|
|
|
missing_keys = missing_keys.append(sub_missing_keys) |
|
|
|
if strict: |
|
if len(unexpected_keys) > 0: |
|
error_msgs = "Unexpected key(s) in state_dict: {}. ".format( |
|
", ".join('"{}"'.format(k) for k in unexpected_keys) |
|
) |
|
raise RuntimeError( |
|
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)) |
|
) |
|
|
|
|
|
def load_param_groups_into_optimizer(optimizer: Optimizer, param_group_path: str) -> dict: |
|
""" |
|
Load information of param_groups into an initialized optimizer. |
|
""" |
|
|
|
# Load list of param_groups from given file path. |
|
# The params in saved_groups are in the form of integer indices. |
|
saved_groups = torch.load(param_group_path, map_location=torch.device("cpu")) |
|
if not isinstance(saved_groups, List): |
|
raise ValueError(f"The param_groups saved at {param_group_path} is not of List type") |
|
|
|
# The params in param_groups are in the form of pytorch tensors. |
|
# For more details, please view source code of Optimizer class in pytorch. |
|
param_groups = optimizer.param_groups |
|
|
|
# Check the compatibility of saved_groups and param_groups. |
|
if len(param_groups) != len(saved_groups): |
|
raise ValueError("loaded state dict has a different number of original parameter groups") |
|
param_lens = (len(g["params"]) for g in param_groups) |
|
saved_lens = (len(g["params"]) for g in saved_groups) |
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): |
|
raise ValueError( |
|
"loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group" |
|
) |
|
|
|
# Creating mapping from id to parameters. |
|
id_map = { |
|
old_id: p |
|
for old_id, p in zip( |
|
chain.from_iterable((g["params"] for g in saved_groups)), |
|
chain.from_iterable((g["params"] for g in param_groups)), |
|
) |
|
} |
|
|
|
# Update parameter groups, setting their 'params' value. |
|
def update_group(group, new_group): |
|
new_group["params"] = group["params"] |
|
return new_group |
|
|
|
updated_groups = [update_group(g, ng) for g, ng in zip(param_groups, saved_groups)] |
|
|
|
optimizer.__dict__.update({"param_groups": updated_groups}) |
|
return id_map |
|
|
|
|
|
def load_states_into_optimizer(optimizer: Optimizer, state_dict: dict, id_map: dict, strict: bool = False): |
|
r"""Copies states from `state_dict` into an Optimizer object. |
|
|
|
Args: |
|
optimizer(Optimizer): An initialized Optimizer object to be loaded |
|
state_dict(dict): A mapping from tensor index (an integer) |
|
to its states to be loaded (a mapping from state name to a tensor). |
|
id_map(dict): A mapping from tensor index (an integer) |
|
to its corresponding parameter (a tensor) whose states will be updated. |
|
strict(bool, optional): If set to True, only load the parameters with its id in id_map. Defaults to False. |
|
""" |
|
|
|
# Ensure that the keys of state_dict are integers. |
|
state_dict = {int(k): v for k, v in state_dict.items()} |
|
|
|
def cast(param, value, key=None): |
|
r"""Make a deep copy of value, casting all tensors to device of param.""" |
|
if isinstance(value, torch.Tensor): |
|
# Floating-point types are a bit special here. They are the only ones |
|
# that are assumed to always match the type of params. |
|
# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424 |
|
if key != "step": |
|
if param.is_floating_point(): |
|
value = value.to(param.dtype) |
|
value = value.to(param.device) |
|
return value |
|
elif isinstance(value, dict): |
|
return {k: cast(param, v, key=k) for k, v in value.items()} |
|
elif isinstance(value, container_abcs.Iterable): |
|
return type(value)(cast(param, v) for v in value) |
|
else: |
|
return value |
|
|
|
# Copy state assigned to params (and cast tensors to appropriate types). |
|
# State that is not assigned to params is copied as is (needed for |
|
# backward compatibility). |
|
new_states = defaultdict(dict) |
|
for k, v in state_dict.items(): |
|
if k in id_map: |
|
param = id_map[k] |
|
new_states[param] = cast(param, v) |
|
elif not strict: |
|
new_states[k] = v |
|
|
|
optimizer.state.update(new_states) |
|
|
|
|
|
def sharded_optimizer_loading_epilogue(optimizer: Optimizer): |
|
r"""Do the cleaning up work after state_dict has been loaded into optimizer |
|
|
|
Args: |
|
optimizer(Optimizer): An optimizer object whose state has just been loaded. |
|
""" |
|
|
|
# Do the cleaning up as in src code of Pytorch. |
|
if Version(torch.__version__) >= Version("2.0.0"): |
|
optimizer._patch_step_function() # To support multiprocessing pickle/unpickle |
|
else: |
|
optimizer._hook_for_profile() # To support multiprocessing pickle/unpickle. |
|
optimizer.defaults.setdefault("differentiable", False) |
|
|
|
|
|
def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]: |
|
""" |
|
Check whether the checkpoint has an index file. |
|
|
|
Args: |
|
checkpoint_path (str): path to the checkpoint. |
|
|
|
Returns: |
|
Tuple[bool, Optional[Path]]: a tuple of (has_index_file, index_file_path) |
|
""" |
|
checkpoint_path = Path(checkpoint_path) |
|
if checkpoint_path.is_file(): |
|
# check if it is .index.json |
|
reg = re.compile("(.*?).index((\..*)?).json") |
|
if reg.fullmatch(checkpoint_path.name) is not None: |
|
return True, checkpoint_path |
|
else: |
|
return False, None |
|
elif checkpoint_path.is_dir(): |
|
# check if there is only one a file ending with .index.json in this directory |
|
index_files = list(checkpoint_path.glob("*.index.*json")) |
|
|
|
# if we found a .index.json file, make sure there is only one |
|
if len(index_files) > 0: |
|
assert ( |
|
len(index_files) == 1 |
|
), f"Expected to find one .index.json file in {checkpoint_path}, but found {len(index_files)}" |
|
|
|
if len(index_files) == 1: |
|
return True, index_files[0] |
|
else: |
|
return False, None |
|
else: |
|
raise RuntimeError(f"Invalid checkpoint path {checkpoint_path}. Expected a file or a directory.") |
|
|
|
|
|
def load_state_dict(checkpoint_file_path: Path): |
|
""" |
|
Load state dict from checkpoint. |
|
|
|
Args: |
|
checkpoint_file_path (Path): path to the checkpoint file. |
|
|
|
Returns: |
|
dict: state dict. |
|
""" |
|
|
|
assert not is_dtensor_checkpoint( |
|
checkpoint_file_path |
|
), f"Cannot load state dict from dtensor checkpoint {checkpoint_file_path}, you should convert the distributed tensors to gathered tensors with our CLI offline." |
|
|
|
if is_safetensor_checkpoint(checkpoint_file_path): |
|
assert ( |
|
is_safetensors_available() |
|
), f"Cannot load state dict from safetensor checkpoint {checkpoint_file_path}, because safetensors is not available. Please install safetensors first with pip install safetensors." |
|
# load with safetensors |
|
from safetensors import safe_open |
|
|
|
state_dict = {} |
|
with safe_open(checkpoint_file_path, framework="pt", device="cpu") as f: |
|
for k in f.keys(): |
|
state_dict[k] = f.get_tensor(k) |
|
return state_dict |
|
|
|
else: |
|
# load with torch |
|
return torch.load(checkpoint_file_path, map_location=torch.device("cpu")) |
|
|
|
|
|
def add_prefix(weights_name: str, prefix: Optional[str] = None) -> str: |
|
if prefix is not None and len(prefix) > 0: |
|
splits = weights_name.split(".") |
|
splits = splits[:-1] + [prefix] + splits[-1:] |
|
weights_name = ".".join(splits) |
|
|
|
return weights_name |
|
|
|
|
|
def get_model_base_filenames(prefix: str = None, use_safetensors: bool = False): |
|
""" |
|
generate base model weight filenames |
|
""" |
|
weights_name = SAFE_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME |
|
weights_name = add_prefix(weights_name, prefix) |
|
|
|
save_index_file = SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME |
|
save_index_file = add_prefix(save_index_file, prefix) |
|
|
|
return weights_name, save_index_file |
|
|
|
|
|
def get_optimizer_base_filenames(prefix: str = None): |
|
""" |
|
generate base optimizer state filenames |
|
""" |
|
states_name = STATES_NAME |
|
states_name = add_prefix(states_name, prefix) |
|
|
|
save_index_file = STATES_INDEX_NAME |
|
save_index_file = add_prefix(save_index_file, prefix) |
|
|
|
param_group_file = GROUP_FILE_NAME |
|
param_group_file = add_prefix(param_group_file, prefix) |
|
|
|
return states_name, save_index_file, param_group_file |
|
|
|
|
|
def get_shard_filename(weights_name: str, idx: int): |
|
""" |
|
get shard file name |
|
""" |
|
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}.bin") |
|
shard_file = shard_file.replace(".safetensors", f"-{idx+1:05d}.safetensors") |
|
return shard_file
|
|
|