ColossalAI/tests/test_zero/test_gemini/test_search.py

119 lines
5.2 KiB
Python

import pytest
import torch
import colossalai
from colossalai.tensor import ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext
from colossalai.zero.gemini.chunk import init_chunk_manager, search_chunk_configuration
from tests.components_to_test.registry import non_distributed_component_funcs
def init_1d_row_spec(model, pg: ProcessGroup):
tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for n, p in model.named_parameters():
if 'weight' in n and 'ln' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*tensor_spec)
def exam_search_chunk_size():
world_size = torch.distributed.get_world_size()
pg_tp = ProcessGroup(tp_degree=world_size)
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
# make sure torch_model and model has the same parameter values
with ColoInitContext(device=get_current_device()):
model = model_builder()
init_1d_row_spec(model, pg_tp)
config_dict, *_ = search_chunk_configuration(model,
search_range_m=1,
search_interval=16,
min_chunk_size_m=0,
filter_exlarge_params=True)
for key in config_dict:
chunk_size = config_dict[key]['chunk_size']
if world_size == 1:
assert chunk_size == 31616
else:
assert chunk_size == 1024
def exam_search_strict_ddp():
world_size = torch.distributed.get_world_size()
default_shard_pg = ProcessGroup(tp_degree=world_size)
default_shard_spec = ShardSpec([-1], [world_size])
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
# get the chunk configuration over replicated models
with ColoInitContext(device=get_current_device()):
ddp_model = model_builder()
re_dict, re_total, re_wasted = search_chunk_configuration(ddp_model,
search_range_m=1,
search_interval=16,
min_chunk_size_m=0,
filter_exlarge_params=True,
strict_ddp_flag=False)
# get the chunk configuration over sharded ddp models
with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg,
default_dist_spec=default_shard_spec):
sharded_ddp_model = model_builder()
sh_dict, sh_total, sh_wasted = search_chunk_configuration(sharded_ddp_model,
search_range_m=1,
search_interval=16,
min_chunk_size_m=0,
filter_exlarge_params=True,
strict_ddp_flag=True)
assert re_dict == sh_dict
for key in re_dict:
assert re_dict[key] == sh_dict[key]
assert re_total == sh_total
assert re_wasted == sh_wasted
def exam_chunk_manager():
world_size = torch.distributed.get_world_size()
default_shard_pg = ProcessGroup(tp_degree=world_size)
default_shard_spec = ShardSpec([-1], [world_size])
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg,
default_dist_spec=default_shard_spec):
sharded_ddp_model = model_builder()
chunk_manager = init_chunk_manager(sharded_ddp_model,
get_current_device(),
hidden_dim=16,
search_range_m=1,
min_chunk_size_m=0,
filter_exlarge_params=True,
strict_ddp_flag=True)
config_dict = chunk_manager.dp_degree_chunk_size_dict
assert len(config_dict) == 1
assert config_dict[world_size] == 31616
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_search_chunk_size()
exam_search_strict_ddp()
exam_chunk_manager()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_search(world_size):
spawn(run_dist, world_size)
if __name__ == '__main__':
test_search(4)