mirror of https://github.com/hpcaitech/ColossalAI
49 lines
1.6 KiB
Python
49 lines
1.6 KiB
Python
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
import colossalai
|
|
from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
def check_cross_entropy():
|
|
input_t = torch.randn(4, 4, device=get_current_device(), requires_grad=True)
|
|
input_ct = torch.randn(4, 4, device=get_current_device(), requires_grad=True)
|
|
with torch.no_grad():
|
|
input_ct.copy_(input_t)
|
|
|
|
target = torch.randint(4, (4,), dtype=torch.int64, device=get_current_device())
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
pg = ProcessGroup(tp_degree=world_size)
|
|
input_t_colo = ColoTensor.from_torch_tensor(tensor=input_ct, spec=ColoTensorSpec(pg))
|
|
input_shard = input_t_colo.redistribute(ShardSpec([-1], [pg.tp_world_size()]))
|
|
input_shard.set_tensor_spec(dist_spec=None, compute_spec=ComputeSpec(ComputePattern.TP1D))
|
|
|
|
output = F.cross_entropy(input_t, target)
|
|
output_colo = F.cross_entropy(input_shard, target)
|
|
assert torch.allclose(output_colo, output)
|
|
|
|
output.backward()
|
|
output_colo.backward()
|
|
|
|
assert torch.allclose(input_t.grad, input_ct.grad)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
check_cross_entropy()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize('world_size', [1, 2])
|
|
@rerun_if_address_is_in_use()
|
|
def test_loss_func(world_size):
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_loss_func(1)
|