ColossalAI/chunk_codegen.py

2131 lines
82 KiB
Python

import colossalai
import torch
import copy
from typing import List, Callable, Any, Tuple, Dict, Iterable
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
from torch.fx.graph import (
_Namespace,
PythonCode,
_custom_builtins,
_is_from_torch,
_format_target,
magic_methods,
CodeGen,
_origin_type_map,
inplace_methods,
_CustomBuiltin,
)
from colossalai.fx.profiler import (
calculate_fwd_out,
calculate_fwd_tmp,
parameter_size,
activation_size,
)
CODEGEN_AVAILABLE = True
__all__ = ["ChunkCodeGen"]
def _delete_free_var_from_last_use(user_to_last_uses):
for key, value in user_to_last_uses.items():
for n in value:
if n.op == "placeholder":
user_to_last_uses[key].remove(n)
def _get_node_shape(node):
if hasattr(node.meta["tensor_meta"], "shape"):
return node.meta["tensor_meta"].shape
return None
def _is_non_compute_node(node):
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def _is_non_compute_node_except_placeholder(node):
if any(i in node.op for i in ["get_attr", "output"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def _is_non_compute_node_except_placeholder_output(node):
if any(i in node.op for i in ["get_attr"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
class IndexTracer(object):
def __init__(self, gm) -> None:
self.gm = gm
self.nodes_list = list(gm.graph.nodes)
self.idx_trace_list = self._init_idx_trace_list()
self.idx_trace_equal = []
self.idx_view_list = []
self.idx_count = -1
def _init_idx_trace_list(self):
idx_trace_list = []
for n in self.nodes_list:
if _get_node_shape(n) != None:
cur_trace = {
"idx": [None for _ in range(len(_get_node_shape(n)))],
"compute": [[] for _ in range(len(_get_node_shape(n)))],
"source": [{} for _ in range(len(_get_node_shape(n)))],
}
else:
cur_trace = {"idx": [], "compute": [], "source": []}
idx_trace_list.append(cur_trace)
return idx_trace_list
def _add_index(self):
"""
Update the count and return it. To record the idx number.
Returns:
idx_count: int
"""
self.idx_count += 1
return self.idx_count
def _del_dim(self, idx, dim_idx):
self.idx_trace_list[idx]["idx"].pop(dim_idx)
self.idx_trace_list[idx]["compute"].pop(dim_idx)
self.idx_trace_list[idx]["source"].pop(dim_idx)
def _add_dim(self, node_idx, dim_idx):
self.idx_trace_list[node_idx]["idx"].insert(dim_idx, self._add_index())
self.idx_trace_list[node_idx]["compute"].insert(dim_idx, [])
self.idx_trace_list[node_idx]["source"].insert(dim_idx, {})
def _transform_index(self, node, node_dim):
node_idx = self._find_idx_trace_from_node(node)
dims = list(range(len(node_idx)))
return dims[node_dim]
def _inherit_index(self, node_from, node_from_dim, node_to, node_to_dim):
node_from_dim = self._transform_index(node_from, node_from_dim)
node_to_dim = self._transform_index(node_to, node_to_dim)
node_from_trace = self._find_trace_from_node(node_from)
node_to_trace = self._find_trace_from_node(node_to)
node_to_trace["idx"][node_to_dim] = node_from_trace["idx"][node_from_dim]
node_to_trace["compute"][node_to_dim] = copy.deepcopy(
node_from_trace["compute"][node_from_dim]
)
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
def _inherit_all_computation(self, node_from, node_to):
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
assert len(node_from_compute) == len(node_to_compute)
for i in range(len(node_from_compute)):
self._add_source(node_from, i, node_to, i)
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
node_from_dim = self._transform_index(node_from, node_from_dim)
node_from_trace = self._find_trace_from_node(node_from)
node_to_dim = self._transform_index(node_to, node_to_dim)
node_to_trace = self._find_trace_from_node(node_to)
node_from_idx = _find_idx_by_name(node_from.name, self.nodes_list)
if init:
node_to_trace["source"][node_to_dim] = {}
# add dim to cur new source
if node_from_idx not in node_to_trace["source"][node_to_dim]:
node_to_trace["source"][node_to_dim][node_from_idx] = [node_from_dim]
else:
if node_from_dim not in node_to_trace["source"][node_to_dim][node_from_idx]:
node_to_trace["source"][node_to_dim][node_from_idx].append(node_from_dim)
# update inputs source
node_to_trace["source"][node_to_dim].update(
node_from_trace["source"][node_from_dim]
)
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
if exclude == None:
exclude = []
else:
exclude = [self._transform_index(node_to, i) for i in exclude]
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
# assert len(node_from_compute) == len(node_to_compute)
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
if self._transform_index(node_to, i) in exclude:
continue
self._add_source(node_from, i, node_to, i)
for j in node_from_compute[i]:
if j not in node_to_compute[i]:
node_to_compute[i].append(j)
def _mark_idx_equal(self, node1, dim1, node2, dim2):
"""
Mark 2 index to be equal.
Args:
idx1 (int): index count.
idx2 (int): index count.
"""
# node1_idx = _find_idx_by_name(node1.name, self.nodes_list)
# node2_idx = _find_idx_by_name(node2.name, self.nodes_list)
# if node1_idx > node2_idx:
# self._add_source(node2, dim2, node1, dim1)
# else:
# self._add_source(node1, dim1, node2, dim2)
def _mark_computation(self, node, idx, dim):
"""
Mark some dims of node as computed.
Args:
node (node)
idx (int): node index
dim (list or int): dims to be marked as computed
"""
if isinstance(dim, int):
dim = [dim]
dims = list(range(len(_get_node_shape(node))))
for d in dim:
cur_dim = dims[d]
if idx not in self.idx_trace_list[idx]["compute"][cur_dim]:
self.idx_trace_list[idx]["compute"][cur_dim].append(idx)
def _find_trace_from_node(self, node):
"""
Find node idx and compute trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
compute (list): computed idx of the node.
"""
node_idx = _find_idx_by_name(node.name, self.nodes_list)
node_dict = self.idx_trace_list[node_idx]
return node_dict
def _find_source_trace_from_node(self, node):
"""
Find node source trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
compute (list): computed idx of the node.
"""
node_idx = _find_idx_by_name(node.name, self.nodes_list)
node_dict = self.idx_trace_list[node_idx]
return node_dict["source"]
def _find_idx_trace_from_node(self, node):
"""
Find node idx trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
"""
node_idx = _find_idx_by_name(node.name, self.nodes_list)
return self.idx_trace_list[node_idx]["idx"]
def _find_compute_trace_from_node(self, node):
"""
Find node compute trace by the node.
Args:
node (node)
Returns:
compute (list): computed idx of the node.
"""
node_idx = _find_idx_by_name(node.name, self.nodes_list)
return self.idx_trace_list[node_idx]["compute"]
def _assign_index_as_input(self, node, node_idx, input_node=None):
"""
Assign node's trace as its input node.
Args:
node (node)
node_idx (int)
"""
if input_node == None:
input_node = node.args[0]
input_node_idx = _find_idx_by_name(input_node.name, self.nodes_list)
input_node_idx_trace = self.idx_trace_list[input_node_idx]["idx"]
new_idx_trace = copy.deepcopy(input_node_idx_trace)
self.idx_trace_list[node_idx]["idx"] = new_idx_trace
self._inherit_all_computation(input_node, node)
def _assign_all_index(self, node, node_idx):
"""
Add new index for all node's dims.
Args:
node (node)
node_idx (int)
"""
shape = node.meta["tensor_meta"].shape
new_trace = []
for _ in shape:
new_trace.append(self._add_index())
self.idx_trace_list[node_idx]["idx"] = new_trace
def _assign_transpose_index(self, node, node_idx):
"""
Assign index for transpose op.
1. swap input's dim according to transpose args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
input_node = node.args[0]
tranpose_dim = node.args[1:]
self._assign_index_as_input(node, node_idx, input_node)
self._inherit_index(input_node, tranpose_dim[1], node, tranpose_dim[0])
self._inherit_index(input_node, tranpose_dim[0], node, tranpose_dim[1])
def _assign_permute_index(self, node, node_idx):
"""
Assign index for permute op.
1. swap input's dim according to permute args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
permute_dim = node.args[1:]
input_node = node.args[0]
self._assign_index_as_input(node, node_idx, input_node)
for idx, d in enumerate(permute_dim):
self._inherit_index(input_node, d, node, idx)
def _assign_linear_index(self, node, node_idx):
"""
Assign index for linear op.
1. copy trace from input node and change last index accroding to weight
2. mark equal for input node last index, weight first dim and bias dim.
3. inherit input's computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
if len(node.args) == 2:
input_node, weight = node.args
bias = None
else:
input_node, weight, bias = node.args
self._assign_index_as_input(node, node_idx)
self._inherit_index(weight, 1, node, -1)
self._mark_computation(node, node_idx, [-1])
self._mark_idx_equal(input_node, -1, weight, 0)
if bias:
self._mark_idx_equal(input_node, -1, bias, 0)
def _assign_matmul_index(self, node, node_idx):
"""
Assign index for matmul op.
1. copy trace from matmul_left and change last index accroding to matmul_right. (assert they have same length)
2. mark equal for input matmul_left -1 index and matmul_right -2 dim.
3. inherit matmul_left and matmul_right computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
matmul_left, matmul_right = node.args
assert len(_get_node_shape(matmul_left)) == len(_get_node_shape(matmul_right))
self._assign_index_as_input(node, node_idx, matmul_left)
self._inherit_index(matmul_right, -1, node, -1)
self._mark_computation_from_node(matmul_right, node, [-1, -2])
self._mark_computation(node, node_idx, [-1])
self._mark_idx_equal(matmul_left, -1, matmul_right, -2)
def _assign_layernorm_index(self, node, idx):
"""
Assign index for layernorm op.
1. assign index as input node
2. inherit computation and mark last 2 dims as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
self._mark_computation(node, idx, [-1])
def _assign_elementwise_index(self, node, idx):
"""
Assign index for element-wise op (eg. relu sigmoid add mul).
1. assign index as input node
2. inherit computation from all input nodes.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
nodes_in = []
for node_in in node.args:
if type(node_in) == type(node):
nodes_in.append(node_in)
self._mark_computation_from_node(node_in, node)
assert len(nodes_in) <= 2
if len(nodes_in) == 2:
node_in0_shape = _get_node_shape(nodes_in[0])
node_in1_shape = _get_node_shape(nodes_in[1])
for i in range(-1, -min(len(node_in0_shape), len(node_in1_shape)) - 1, -1):
if node_in0_shape[i] == node_in1_shape[i]:
self._mark_idx_equal(nodes_in[0], i, nodes_in[1], i)
def _assgin_no_change_index(self, node, idx):
self._assign_index_as_input(node, idx)
for node_in in node.args:
if type(node_in) == type(node):
self._mark_computation_from_node(node_in, node)
def _assign_einsum_index(self, node, idx):
"""
Assign index for einsum op.
Args:
node (node)
node_idx (int)
"""
patterns = node.args[0]
input_nodes = node.args[1:]
patterns = patterns.replace(" ", "")
left, right = patterns.split("->")
left = left.split(",")
all_index = []
for i in left:
for c in i:
all_index.append(c)
all_index = set(all_index)
free_index = set([i for i in right])
sum_index = all_index - free_index
for right_idx, right_indice in enumerate(right):
for left_idx, left_str in enumerate(left):
if right_indice in left_str:
source_idx = left_str.index(right_indice)
self._inherit_index(
input_nodes[left_idx], source_idx, node, right_idx
)
# for i in sum_index:
# for left_idx, left_str in enumerate(left):
# if i in left_str:
# self._mark_computation(node, idx, left_str.index(i))
# break
def _assign_softmax_index(self, node, idx):
"""
Assign index for softmax op.
1. assign index as input node
2. inherit computation and mark softmax dim as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
self._mark_computation(node, idx, [node.kwargs["dim"]])
def _assign_unsqueeze_index(self, node, node_idx):
"""
Assign index for unsqueeze op.
1. assign new index for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._del_dim(node_idx, -1)
self._assign_index_as_input(node, node_idx)
self._add_dim(node_idx, node.args[1])
def _assign_dropout_index(self, node, node_idx):
"""
Assign index for unsqueeze op.
1. assign new index for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, node_idx)
def _assign_ones_like_index(self, node, node_idx):
"""
Assign index for oneslike op.
1. assign new index for all dim
Args:
node (node)
node_idx (int)
"""
self._assign_all_index(node, node_idx)
def _assign_view_reshape_index(self, node, node_idx):
"""
Assign index for view and reshape op.
1. get origin shape and target shape by meta info.
2. compute the real value of -1 in target shape.
3. determine changed dim, and assgin index for generated dim.
4. log changed dim and generated dim for restore
5. inherit computation.
6. TODO: look into view list to see whether the view is associated with other,
if so assgin equal dim according to previous view.
Args:
node (node)
node_idx (int)
"""
# get data, turn into number
origin_node = node.args[0]
origin_shape = origin_node.meta["tensor_meta"].shape
target_shape = []
for i in range(1, len(node.args)):
if isinstance(node.args[i], int):
target_shape.append(node.args[i])
else:
target_shape.append(node.args[i].meta["fwd_out"][0])
# compute the value of -1
if -1 in target_shape:
origin_product = 1
for i in origin_shape:
origin_product *= i
target_product = -1
for i in target_shape:
target_product *= i
shape_idx = target_shape.index(-1)
target_shape[shape_idx] = origin_product // target_product
# determine changed dim
len_diff = len(origin_shape) - len(target_shape)
if len_diff == 1:
# dim merge
dim_equal = [i == j for i, j in zip(origin_shape[:-1], target_shape)]
dim_to = [dim_equal.index(False)]
dim_from = [dim_equal.index(False), dim_equal.index(False) + 1]
self._add_dim(node_idx, -1)
elif len_diff == -1:
# dim expand
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
dim_from = [dim_equal.index(False)]
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
self._del_dim(node_idx, -1)
else:
raise NotImplementedError(
"shape"
+ str(origin_shape)
+ "and"
+ str(target_shape)
+ "view not implemented"
)
# get new index
origin_trace = self._find_idx_trace_from_node(origin_node)
self._assign_index_as_input(node, node_idx, origin_node)
dim_from.reverse()
for i in dim_from:
self._del_dim(node_idx, i)
for i in dim_to:
self._add_dim(node_idx, i)
# inherit computation
compute_log = self._find_compute_trace_from_node(origin_node)
for i in dim_from:
if origin_trace[i] in compute_log:
for j in dim_to:
self._mark_computation(node, node_idx, [j])
break
# log view, not used now
view_dict = {
"idx_from": [origin_trace[i] for i in dim_from],
"dim_from": dim_from,
"idx_to": [self.idx_trace_list[node_idx]["idx"][i] for i in dim_to],
"dim_to": dim_to,
}
self.idx_view_list.append(view_dict)
def _merge_equal_idx(self):
idx_equal = copy.deepcopy(self.idx_trace_equal)
idx_equal.reverse()
for idx in idx_equal:
merge_to = min(idx)
merge_from = max(idx)
for trace in self.idx_trace_list:
if merge_from in trace["idx"]:
trace["idx"] = [
merge_to if i == merge_from else i for i in trace["idx"]
]
def trace_index(self):
for idx, node in enumerate(self.nodes_list):
if node.op == "placeholder":
self._assign_all_index(node, idx)
elif node.op == "call_method":
if "transpose" in node.name:
self._assign_transpose_index(node, idx)
elif "permute" in node.name:
self._assign_permute_index(node, idx)
elif "view" in node.name or "reshape" in node.name:
self._assign_view_reshape_index(node, idx)
elif "unsqueeze" in node.name:
self._assign_unsqueeze_index(node, idx)
elif any(i in node.name for i in ["to", "contiguous"]):
self._assgin_no_change_index(node, idx)
else:
raise NotImplementedError(node.name, "method not implemented yet!")
elif node.op == "call_function":
if "linear" in node.name:
self._assign_linear_index(node, idx)
elif "matmul" in node.name:
self._assign_matmul_index(node, idx)
elif "softmax" in node.name:
self._assign_softmax_index(node, idx)
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu"]):
self._assign_elementwise_index(node, idx)
elif "ones_like" in node.name:
self._assign_ones_like_index(node, idx)
elif "dropout" in node.name:
self._assign_dropout_index(node, idx)
elif "einsum" in node.name:
self._assign_einsum_index(node, idx)
elif "getattr" in node.name:
continue # get attr like shape
elif "getitem" in node.name:
continue # get item in list
else:
raise NotImplementedError(
node.name, "function not implemented yet!"
)
elif node.op == "call_module":
if any(n in node.name for n in ["layernorm", "norm"]):
self._assign_layernorm_index(node, idx)
else:
raise NotImplementedError(node.name, "module not implemented yet!")
elif node.op == "get_attr":
self._assign_all_index(node, idx) # get param
elif node.op == "output":
continue
else:
raise NotImplementedError(node.op, "op not implemented yet!")
# self._merge_equal_idx()
def check_index_source(self, start_dim, start_node, start_idx, end_dim, end_node):
"""
Check 2 given index: one index should be source of the other
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
start_node_idx = _find_idx_by_name(start_node.name, self.nodes_list)
end_node_trace = self._find_trace_from_node(end_node)
end_node_trace_source = end_node_trace["source"][end_dim]
sorted_source = sorted(
end_node_trace_source.items(), key=lambda d: d[0], reverse=True
)
for node_idx, node_dim in sorted_source:
if node_idx == start_node_idx and start_dim in node_dim:
return True
# it means we meet a node outside the loop, and the node is not input node
if node_idx < start_idx:
return False
return False
def check_index_compute(self, start_idx, end_dim, end_node, end_idx):
"""
Check 2 given index: check they haven't been computed in the source trace.
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
end_node_trace = self._find_trace_from_node(end_node)
end_node_compute = end_node_trace["compute"][end_dim]
if any(start_idx <= i <= end_idx for i in end_node_compute):
return False
return True
def get_node_chunk_dim(self, node_from, node_from_dim, node_to):
node_from_source = self._find_source_trace_from_node(node_from)
dim_source = node_from_source[node_from_dim]
node_to_idx = _find_idx_by_name(node_to.name, self.nodes_list)
for k, v in dim_source.items():
if k == node_to_idx:
return v
return None
def _find_inherit_dim(self, input_node, input_dim, node):
input_node_idx = _find_idx_by_name(input_node.name, self.nodes_list)
node_trace_source = self._find_source_trace_from_node(node)
for node_dim in range(len(_get_node_shape(node))):
if (
input_node_idx in node_trace_source[node_dim]
and input_dim in node_trace_source[node_dim][input_node_idx]
):
return node_dim
return None
def check_index_duplicate(self, chunk_infos, return_dim=False):
input_dim_after_node = {}
for input_node_idx, input_node in enumerate(chunk_infos["inputs"]):
for k, v in chunk_infos["inputs_dim"][input_node_idx].items():
inherit_dim = self._find_inherit_dim(input_node, v, self.nodes_list[k])
if inherit_dim:
input_dim_after_node[k] = inherit_dim
for node in self.nodes_list[
chunk_infos["region"][0] : chunk_infos["region"][1] + 1
]:
if _is_non_compute_node_except_placeholder(node):
continue
count = 0
duplicate_dims = []
node_trace_source = self._find_source_trace_from_node(node)
for node_dim in range(len(_get_node_shape(node))):
duplicate_dim = []
duplicate_flag = False
dim_source = node_trace_source[node_dim]
for k, v in dim_source.items():
if chunk_infos["region"][0] <= k <= chunk_infos["region"][1]:
if k in input_dim_after_node and input_dim_after_node[k] in v:
duplicate_flag = True
duplicate_dim.append((k, v))
duplicate_dims.append(duplicate_dim)
if duplicate_flag:
count += 1
if count > 1:
if return_dim:
return False, duplicate_dims
else:
return False
if return_dim:
return True, None
else:
return True
class FlowTracer(object):
def __init__(self, gm) -> None:
self.gm = gm
self.node_list = list(gm.graph.nodes)
self.flow_trace = {}
def _add_trace(self, name):
self.flow_trace[name] = []
def _add_node(self, trace_name, node):
self.flow_trace[trace_name].append(
{"node": node, "inside_depend": [], "outside_depend": []}
)
def _add_inside_depend(self, flow_name, node, inside_depend_node):
for i in self.flow_trace[flow_name]:
if i["node"] == node:
i["inside_depend"].append(inside_depend_node)
return
raise RuntimeError("node not found")
def _add_outside_depend(
self, flow_name, node, outside_depend_node, outside_depend_trace
):
for i in self.flow_trace[flow_name]:
if i["node"] == node:
i["outside_depend"].append({outside_depend_trace: outside_depend_node})
return
raise RuntimeError("node not found")
def _init_trace(self):
for i in self.node_list:
if i.op == "placeholder":
self._add_trace(i.name)
self._add_node(i.name, i)
def _find_flow_for_node(self, node):
if type(self.node_list[0]) != type(node):
return None
if _is_non_compute_node_except_placeholder(node):
return None
for name, trace in self.flow_trace.items():
for i in trace:
if node == i["node"]:
return name
if any(i in node.name for i in ["ones_like"]):
self._add_trace(node.name)
self._add_node(node.name, node)
return node.name
raise RuntimeError("node not found")
def _find_first_valid_flow(self, flow):
for i in flow:
if i is not None:
return i
raise RuntimeError("invalid flow")
def find_node_flow(self, node):
for name, trace in self.flow_trace.items():
for i in trace:
if node == i["node"]:
return name, i
raise RuntimeError("invalid node")
def _get_flow_mix_node(self, node):
if _is_non_compute_node(node):
return None
_, node_trace = self.find_node_flow(node)
if len(node_trace["outside_depend"]) == 0:
return None
elif len(node_trace["outside_depend"]) > 1:
raise NotImplementedError
vars = list(node_trace["outside_depend"][0].values())[0]
return vars
def _get_same_flow_node(self, node_list, node):
name, _ = self.find_node_flow(node)
result = []
for i in self.flow_trace[name]:
if i["node"] in node_list:
result.append(i["node"])
return result
def trace_flow(self):
# init trace
self._init_trace()
for node in self.node_list:
# skip if non compute node
if all(
type(arg) != type(node) or _is_non_compute_node_except_placeholder(arg)
for arg in node.args
) or _is_non_compute_node(node):
continue
node_input_flows = [self._find_flow_for_node(arg) for arg in node.args]
node_domin_flow = self._find_first_valid_flow(node_input_flows)
self._add_node(node_domin_flow, node)
for node_input_flow, arg in zip(node_input_flows, node.args):
if node_input_flow is None:
continue
elif node_input_flow == node_domin_flow:
self._add_inside_depend(node_domin_flow, node, arg)
else:
self._add_outside_depend(
node_domin_flow, node, arg, node_input_flow
)
return self.flow_trace
def _detect_flow(self, start_idx, start_dim, end_idx, end_dim, index_tracer: IndexTracer):
inputs, outputs = _find_chunk_compute_input_and_output_nodes(
self.node_list[start_idx : end_idx + 1]
)
chunk_info = {
"region": (start_idx, end_idx),
"inputs": inputs,
"inputs_non_chunk": [],
"inputs_dim": start_dim,
"outputs": outputs,
"outputs_dim": end_dim,
"args": {},
}
flow_block = False
# TODO don't allow multi outputs now
if len(outputs) > 1:
flow_block = True
return flow_block, chunk_info
# for idx in range(start_idx, end_idx + 1):
# node = self.node_list[idx]
# mix_flow_node = self._get_flow_mix_node(node)
# if mix_flow_node is None:
# continue
# # if there is a flow mix, op must be in [mul, add, matmul]
# # element-wise op requires dim to be equal in every dim
# if any(n in node.name for n in ["mul", "add"]):
# for i in node.args:
# if type(i) == type(mix_flow_node) and i != mix_flow_node:
# main_flow_var = i
# # if mix flow is a broadcast in chunk dim,
# # TODO: need to move that flow out of the chunk
# mix_flow_node_dim = index_tracer.get_node_chunk_dim(
# self.node_list[end_idx], end_dim, node
# )
# # TODO: we need to loop every dim
# if isinstance(mix_flow_node_dim, list):
# mix_flow_node_dim = mix_flow_node_dim[0]
# if mix_flow_node_dim is None:
# flow_block = True
# break
# if _get_node_shape(mix_flow_node)[mix_flow_node_dim] == 1:
# flow_block = False
# for i in self._get_same_flow_node(
# chunk_info["inputs"], mix_flow_node
# ):
# chunk_info["inputs"].remove(i)
# # else, we need to chunk mix var as well
# else:
# # TODO chunk another value
# flow_block = True
# break
# else:
# raise NotImplementedError("%s not implemented" % node.name)
# if flow_block:
# flow_block = True
# return flow_block, chunk_info
inputs_dim = []
remove_inputs = []
for input_node in chunk_info["inputs"]:
input_dict = {}
for user in input_node.users.keys():
if _is_non_compute_node(user):
continue
user_idx = _find_idx_by_name(user.name, self.node_list)
dim = None
if start_dim <= user_idx < end_idx:
dim = index_tracer.get_node_chunk_dim(
self.node_list[end_idx], end_dim, input_node
)
# TODO: we need to loop every dim
if isinstance(dim, list):
dim = dim[0]
elif user_idx == end_idx:
dim = end_dim
# n has relation with chunk dim
if dim is not None and _get_node_shape(user)[dim] != 1:
input_dict[user_idx] = dim
if len(input_dict) == 0:
remove_inputs.append(input_node)
else:
inputs_dim.append(input_dict)
chunk_info["inputs_dim"] = inputs_dim
for i in remove_inputs:
if i in chunk_info["inputs"]:
chunk_info["inputs"].remove(i)
duplicate_result, duplicate_dim = index_tracer.check_index_duplicate(chunk_info, return_dim=True)
# we need to log input nodes to avoid deleteing them in the loop
non_chunk_inputs = _find_chunk_all_input_nodes(
self.node_list[start_idx : end_idx + 1]
)
for i in non_chunk_inputs:
if i not in chunk_info["inputs"]:
chunk_info["inputs_non_chunk"].append(i)
return flow_block, chunk_info
def _assgin_single_node_flow(self, arg_node, start_idx, end_idx,
inputs, index_tracer, cur_node_dim,
cur_node_compute, cur_node_source, cur_node_fix_dim, all_node_info,
next_node_list):
arg_idx = _find_idx_by_name(arg_node.name, index_tracer.nodes_list)
# arg in chunk range or be inputs
if not (start_idx <= arg_idx < end_idx):
return True
# find arg dim
if cur_node_dim is not None:
# dim is computed
if arg_idx in cur_node_compute[cur_node_dim]:
return False
if arg_idx not in cur_node_source[cur_node_dim]:
arg_dim = None
else:
arg_dim = cur_node_source[cur_node_dim][arg_idx][0]
else:
arg_dim = None
# get fix dim
arg_fix_dim = []
if cur_node_dim is not None:
for i in cur_node_fix_dim:
fix_dim_source = cur_node_source[i]
if arg_idx in fix_dim_source:
arg_fix_dim.append(fix_dim_source[arg_idx][0])
# if already in node_info, arg dim must be same
if arg_node in all_node_info:
if all_node_info[arg_node] != arg_dim:
return False
all_node_info[arg_node]['fix_dim'] = list(set(all_node_info[arg_node]['fix_dim'] + arg_fix_dim))
# else add it to list
else:
all_node_info[arg_node] = {'chunk_dim': arg_dim, 'fix_dim': arg_fix_dim}
next_node_list.append(arg_node)
return True
def flow_search(self, start_idx, start_dim, end_idx, end_dim, index_tracer: IndexTracer):
inputs, outputs = _find_chunk_compute_input_and_output_nodes(
self.node_list[start_idx : end_idx + 1]
)
# only single ouput
if len(outputs) > 1:
return None
cur_node_list = [index_tracer.nodes_list[end_idx]] # start from the last node
all_node_info = {cur_node_list[0]: {'chunk_dim': end_dim, 'fix_dim': []}}
while len(cur_node_list) > 0:
next_node_list = []
for cur_node in cur_node_list:
# get cur node info
cur_node_chunk_dim = all_node_info[cur_node]['chunk_dim']
cur_node_fix_dim = all_node_info[cur_node]['fix_dim']
cur_node_idx = _find_idx_by_name(cur_node.name, index_tracer.nodes_list)
if cur_node_chunk_dim:
cur_node_compute = index_tracer._find_compute_trace_from_node(cur_node)
cur_node_source = index_tracer._find_source_trace_from_node(cur_node)
else:
cur_node_compute = cur_node_source = None
# get all valid args
arg_list = []
for arg in cur_node.args:
if type(arg) != type(cur_node):
continue
if _is_non_compute_node(arg):
continue
arg_list.append(arg)
flow_flag = self._assgin_single_node_flow(arg, start_idx, end_idx,
inputs, index_tracer, cur_node_chunk_dim,
cur_node_compute, cur_node_source, cur_node_fix_dim, all_node_info,
next_node_list)
if flow_flag == False:
return None
if len(arg_list) == 2:
if any(i in cur_node.name for i in ["add", "mul"]):
for arg in arg_list:
if not (start_idx <= _find_idx_by_name(arg.name, index_tracer.nodes_list) < end_idx):
continue
arg_chunk_dim = all_node_info[arg]['chunk_dim']
arg_fix_dim = all_node_info[arg]['fix_dim']
arg_shape = _get_node_shape(arg)
# add all dim as fix dim except chunk dim
for i, shape in enumerate(arg_shape):
if shape != 1 and i != cur_node_chunk_dim:
if i == arg_chunk_dim:
return None
if i not in arg_fix_dim:
arg_fix_dim.append(i)
elif "einsum" in cur_node.name:
pass
elif "matmul" in cur_node.name:
pass
else:
raise NotImplementedError()
cur_node_list = next_node_list
inputs_dim = []
remove_inputs = []
for input_node in inputs:
input_dict = {}
for user in input_node.users.keys():
if _is_non_compute_node(user):
continue
user_idx = _find_idx_by_name(user.name, self.node_list)
if start_idx <= user_idx <= end_idx:
chunk_dim = all_node_info[user]['chunk_dim']
if chunk_dim is not None:
input_dict[user_idx] = chunk_dim
if len(input_dict) == 0:
remove_inputs.append(input_node)
else:
inputs_dim.append(input_dict)
for i in remove_inputs:
if i in inputs:
inputs.remove(i)
chunk_info = {
"region": (start_idx, end_idx),
"inputs": inputs,
"inputs_non_chunk": [],
"inputs_dim": inputs_dim,
"outputs": outputs,
"outputs_dim": end_dim,
"args": {},
}
# we need to log input nodes to avoid deleteing them in the loop
non_chunk_inputs = _find_chunk_all_input_nodes(
self.node_list[start_idx : end_idx + 1]
)
for i in non_chunk_inputs:
if i not in chunk_info["inputs"]:
chunk_info["inputs_non_chunk"].append(i)
return chunk_info
class MemoryEstimator(object):
def __init__(self, index_tracer: IndexTracer) -> None:
self.index_tracer = index_tracer
def _get_meta_node_size(self, x):
x = x.meta["tensor_meta"]
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
return x
def _get_output_node(self, n):
fwd_out = {
x.uuid: x
for x in n.meta["fwd_out"]
if isinstance(x, torch.Tensor) and hasattr(x, "uuid")
}
out_size = activation_size(fwd_out)
out_node = [n.name] if out_size > 0 else []
# if any(i in n.name for i in ['transpose', 'permute', 'view']):
# out_size = 0
return out_size, out_node
def _get_output_node_size(self, n):
return self._get_output_node(n)[0]
def _add_active_node(self, n, active_list):
new_active = self._get_output_node(n)[1]
if n.op == 'placeholder':
new_active.append(n.name)
for i in new_active:
if i not in active_list:
active_list.append(i)
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
delete_size = 0
delete_node = []
if user.op not in ("output",):
nodes_to_delete = user_to_last_uses.get(user, [])
if to_keep is not None:
keep_list = []
for n in nodes_to_delete:
if n.name in to_keep:
keep_list.append(n)
for n in keep_list:
if n in nodes_to_delete:
nodes_to_delete.remove(n)
if len(nodes_to_delete):
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
for i in range(len(out_node)):
if out_node[i][0] > 0:
delete_node.append(out_node[i][1][0])
elif nodes_to_delete[i].op == "placeholder":
delete_node.append(nodes_to_delete[i].name)
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
# delete_node.append(nodes_to_delete[i].name)
return delete_size, delete_node
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
for i in delete_node:
if i in active_list:
active_list.remove(i)
def _get_chunk_inputs_size(self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx):
nodes_to_delete = []
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
chunk_input_users = chunk_input.users.keys()
chunk_input_users_idx = [_find_idx_by_name(i.name, node_list) for i in chunk_input_users]
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
if chunk_input not in nodes_to_delete:
nodes_to_delete.append(chunk_input)
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
return delete_size
def _get_last_usr(self, nodes):
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
return user_to_last_uses
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
mem = 0
not_contiguous_ops = ["permute"]
inherit_contiguous_ops = ["transpose", "view"]
if node.op == "call_function" and any(
n in node.name for n in ["matmul", "reshape"]
):
for n in node.args:
if n in not_contiguous_list:
# matmul won't change origin tensor, but create a tmp copy
mem += self._get_output_node_size(n)
elif node.op == "call_module":
for n in node.args:
if n in not_contiguous_list:
# module will just make origin tensor to contiguous
if delete:
not_contiguous_list.remove(n)
elif node.op == "call_method" and any(
i in node.name for i in not_contiguous_ops
):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
return mem
def _get_chunk_ratio(self, node, chunk_inputs, chunk_inputs_dim, chunk_size):
node_shape = _get_node_shape(node)
node_source = self.index_tracer._find_source_trace_from_node(node)
for (input_node, input_node_dim) in zip(chunk_inputs, chunk_inputs_dim):
for k, v in input_node_dim.items():
# TODO: inherit dim should be list too, int now
inherit_dim = self.index_tracer._find_inherit_dim(input_node, v, self.index_tracer.nodes_list[k])
if k == _find_idx_by_name(node.name, self.index_tracer.nodes_list):
chunk_ratio = float(chunk_size) / node_shape[inherit_dim]
return chunk_ratio
for dim, source in enumerate(node_source):
if k in source and inherit_dim in source[k]:
chunk_ratio = float(chunk_size) / node_shape[dim]
return chunk_ratio
return 1.
def _get_chunk_delete_node_size(
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
):
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
# return 0
if user.op in ("placeholder", "output"):
return 0
nodes_to_delete = user_to_last_uses.get(user, [])
delete_size = 0
for n in nodes_to_delete:
if n.name in chunk_inputs_names:
continue
delete_size += self._get_output_node_size(n) * chunk_ratio
return delete_size
def _print_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def _print_compute_op_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
if n.op in ["placeholder", "get_attr", "output"]:
continue
if any(i in n.name for i in ["getitem", "getattr"]):
continue
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def estimate_chunk_inference_mem(
self,
gm: torch.fx.GraphModule,
chunk_infos=None,
):
act_memory = 0.0
act_memory_peak_log = []
act_memory_after_node_log = []
active_node_list = []
active_node_list_log = []
not_contiguous_list = []
node_list = list(gm.graph.nodes)
user_to_last_uses = self._get_last_usr(node_list)
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
_delete_free_var_from_last_use(user_to_last_uses_no_free_var)
use_chunk = True if chunk_infos is not None else False
chunk_within = False
chunk_region_idx = None
chunk_ratio = 1 # use it to estimate chunk mem
chunk_size = 1
chunk_inputs_names = []
if use_chunk:
chunk_regions = [i["region"] for i in chunk_infos]
chunk_starts = [i[0] for i in chunk_regions]
chunk_ends = [i[1] for i in chunk_regions]
chunk_inputs = [i["inputs"] for i in chunk_infos]
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos]
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
j.name for i in chunk_inputs_non_chunk for j in i
]
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
for idx, node in enumerate(node_list):
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
if use_chunk and idx in chunk_starts:
chunk_within = True
chunk_region_idx = chunk_starts.index(idx)
act_memory += self._get_output_node_size(chunk_outputs[chunk_region_idx]) / (1024**2)
# determine chunk ratio for current node
if chunk_within:
chunk_ratio = self._get_chunk_ratio(
node, chunk_inputs[chunk_region_idx], chunk_inputs_dim[chunk_region_idx], chunk_size
)
# if node is placeholder, just add the size of the node
if node.op == "placeholder":
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
act_memory_peak_log.append(act_memory)
# skip output
elif node.op == "output":
continue
# no change for non compute node
elif _is_non_compute_node_except_placeholder(node):
act_memory_peak_log.append(act_memory)
# node is a compute op
# calculate tmp, output node and delete node memory
else:
# forward memory
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
act_memory += (
self._get_contiguous_memory(node, not_contiguous_list)
* chunk_ratio
/ (1024**2)
)
act_memory += (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
# record max act memory
act_memory_peak_log.append(act_memory)
# delete useless memory
act_memory -= (
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
* chunk_ratio
/ (1024**2)
)
# delete unused vars not in chunk_input_list
# we can't delete input nodes until chunk ends
if chunk_within:
act_memory -= self._get_chunk_delete_node_size(
node,
user_to_last_uses_no_free_var,
chunk_ratio,
chunk_inputs_names
) / (1024**2)
else:
act_memory -= (self._get_delete_node_size(
node, user_to_last_uses_no_free_var, chunk_inputs_names
) / (1024**2))
# log active node, only effective without chunk
self._add_active_node(node, active_node_list)
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
# if node in chunk end nodes, restore chunk settings
if use_chunk and idx in chunk_ends:
act_memory -= (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
act_memory -= self._get_chunk_inputs_size(
chunk_inputs[chunk_region_idx],
chunk_inputs_non_chunk[chunk_region_idx],
node_list,
chunk_regions[chunk_region_idx][1]
) / (1024**2)
chunk_within = False
chunk_ratio = 1
chunk_region_idx = None
act_memory_after_node_log.append(act_memory)
active_node_list_log.append(copy.deepcopy(active_node_list))
print("with chunk" if use_chunk else "without chunk")
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
self._print_compute_op_mem_log(act_memory_after_node_log, node_list, "after")
# param_memory = parameter_size(gm)
# all_memory = act_memory + param_memory
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log
class ChunkRegionSearch(object):
def __init__(self, gm) -> None:
self.gm = gm
self.node_list = list(gm.graph.nodes)
self.index_tracer = IndexTracer(gm)
self.index_tracer.trace_index()
self.flow_tracer = FlowTracer(gm)
self.flow_tracer.trace_flow()
self.memory_estimator = MemoryEstimator(self.index_tracer)
def _find_peak_node(self, mem_peak):
max_value = max(mem_peak)
max_idx = mem_peak.index(max_value)
return max_idx
def _get_free_var(self):
free_var_idx = []
for idx, n in enumerate(self.node_list):
if n.op == "placeholder":
free_var_idx.append(idx)
return free_var_idx
def _get_min_free_var(self, active_node_list, free_vars):
min_len = 999
for idx, n in enumerate(active_node_list):
if idx in free_vars:
continue
if len(n) < min_len:
min_len = len(n)
return min_len
def _search_max_chunk_region(self, active_node, peak_node, chunk_regions):
free_vars = self._get_free_var()
free_var_num = len(free_vars)
active_node_num = [len(i) for i in active_node]
min_active_node_num = min(active_node_num[free_var_num:])
threshold = max(free_var_num, min_active_node_num)
# from peak_node to free_var
inside_flag = False
chunk_region_start = free_var_num
for i in range(peak_node, -1, -1):
if active_node_num[i] <= threshold:
inside_flag = True
if inside_flag and active_node_num[i] > threshold:
chunk_region_start = i + 1
break
# from peak_node to len-2
inside_flag = False
chunk_region_end = len(active_node) - 1
for i in range(peak_node, len(active_node)):
if active_node_num[i] <= threshold:
inside_flag = True
if inside_flag and active_node_num[i] > threshold:
chunk_region_end = i
break
for i in chunk_regions:
region = i["region"]
if chunk_region_start >= region[0] and chunk_region_end <= region[1]:
return None
elif (
region[0] <= chunk_region_start <= region[1]
and chunk_region_end > region[1]
):
chunk_region_start = region[1] + 1
elif (
region[0] <= chunk_region_end <= region[1]
and chunk_region_start < region[0]
):
chunk_region_end = region[0] - 1
return chunk_region_start, chunk_region_end
def _is_not_compute(self, trace, chunk_range, dim_idx):
if trace["idx"][dim_idx] not in trace["compute"]:
return True
if trace["idx"][dim_idx] in trace["compute"] and all(
i < chunk_range[0] or i > chunk_range[1]
for i in trace["compute"][trace["idx"][dim_idx]]
):
return True
return False
def _find_free_dim(self, input_trace, output_trace, start_idx, end_idx):
start_traces = input_trace[start_idx]
end_trace = output_trace[end_idx]
end_node = self.node_list[end_idx]
chunk_infos = []
for end_dim, end_trace_idx in enumerate(end_trace["idx"]):
if len(start_traces) > 1:
# TODO: implement multi input chunk
continue
for start_node, start_trace in start_traces.items():
for start_dim, start_trace_idx in enumerate(start_trace["idx"]):
if start_idx == 199 and end_idx == 229 and start_dim == 2 and end_dim == 2:
print(1)
self.flow_tracer.flow_search(
start_idx, start_dim, end_idx, end_dim, self.index_tracer
)
# dim size cannot be 1
if (
_get_node_shape(end_node)[end_dim] == 1
or _get_node_shape(start_node)[start_dim] == 1
):
continue
# check index source align
if not self.index_tracer.check_index_source(
start_dim, start_node, start_idx, end_dim, end_node
):
continue
# check index copmute
if not self.index_tracer.check_index_compute(
start_idx, end_dim, end_node, end_idx
):
continue
# detect flow meet
# flow_block, chunk_info = self.flow_tracer._detect_flow(
# start_idx, start_dim, end_idx, end_dim, self.index_tracer
# )
# if flow_block:
# continue
# flow search
chunk_info = self.flow_tracer.flow_search(
start_idx, start_dim, end_idx, end_dim, self.index_tracer
)
if chunk_info is None:
continue
# check index copmute
if not self.index_tracer.check_index_duplicate(chunk_info):
continue
chunk_infos.append(chunk_info)
return chunk_infos
def _search_possible_chunk_regions(self, max_chunk_region, peak_node):
possible_chunk_region = []
output_trace = copy.deepcopy(self.index_tracer.idx_trace_list)
input_trace = [] # trace of a node's input nodes
for _, n in enumerate(self.node_list):
cur_trace = {}
for arg in n.args:
if type(arg) == type(n) and not _is_non_compute_node_except_placeholder(
arg
):
cur_trace[arg] = self.index_tracer._find_trace_from_node(arg)
input_trace.append(cur_trace)
for start_idx in range(max_chunk_region[0], peak_node + 1):
for end_idx in range(peak_node, max_chunk_region[1] + 1):
# skip non compute nodes
if _is_non_compute_node(
self.node_list[start_idx]
) or _is_non_compute_node(self.node_list[end_idx]):
continue
# select free dim
chunk_info = self._find_free_dim(
input_trace, output_trace, start_idx, end_idx
)
if len(chunk_info) > 0:
possible_chunk_region.extend(chunk_info)
return possible_chunk_region
def _search_best_chunk_region(self, possible_chunk_regions, chunk_infos):
max_region_range = 0
best_region = None
while len(possible_chunk_regions) > 0:
for i in possible_chunk_regions:
if i["region"][1] - i["region"][0] > max_region_range:
best_region = i
max_region_range = i["region"][1] - i["region"][0]
if self._is_legal_region(best_region, chunk_infos):
break
possible_chunk_regions.remove(i)
max_region_range = 0
best_region = None
return best_region
def _is_legal_region(self, cur_chunk_info, chunk_infos):
(chunk_region_start, chunk_region_end) = cur_chunk_info["region"]
if cur_chunk_info in chunk_infos:
return False
if chunk_region_end < chunk_region_start:
return False
for i in chunk_infos:
region = i["region"]
if not ((chunk_region_start > region[1] and chunk_region_end > region[1])
or (chunk_region_start < region[0] and chunk_region_end < region[0])):
return False
return True
def _step_search(self, mem_peak, active_node, chunk_regions):
peak_node = self._find_peak_node(mem_peak)
max_chunk_region = self._search_max_chunk_region(
active_node, peak_node, chunk_regions
)
if max_chunk_region == None:
return None
possible_chunk_regions = self._search_possible_chunk_regions(
max_chunk_region, peak_node
)
best_chunk_region = self._search_best_chunk_region(possible_chunk_regions, chunk_regions)
return best_chunk_region
def _stop_search(self, init_mem_peak, mem_peak):
sorted_init_mem_peak = sorted(init_mem_peak)
if max(mem_peak) < sorted_init_mem_peak[int(len(sorted_init_mem_peak) * 0.5)]:
return True
return False
def search_region(self):
chunk_infos = []
(
init_mem_peak,
_,
active_node,
) = self.memory_estimator.estimate_chunk_inference_mem(self.gm)
mem_peak = init_mem_peak
while True:
chunk_info = self._step_search(mem_peak, active_node, chunk_infos)
if chunk_info is None:
break
chunk_infos.append(chunk_info)
(
mem_peak,
_,
active_node,
) = self.memory_estimator.estimate_chunk_inference_mem(self.gm, chunk_infos)
if self._stop_search(init_mem_peak, mem_peak):
break
return chunk_infos
def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape):
new_shape = "["
for idx, i in enumerate(shape):
if idx == chunk_dim:
new_shape += "%s:%s + chunk_size" % (chunk_idx_name, chunk_idx_name)
else:
new_shape += ":"
new_shape += ", "
new_shape = new_shape[:-2] + "]"
return new_shape
def _gen_loop_start(chunk_input, chunk_output, chunk_ouput_dim, chunk_size=2):
input_node = chunk_input[0]
out_shape = _get_node_shape(chunk_output)
out_str = str(list(out_shape))
context = (
"chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor chunk_idx in range"
% (out_str, input_node.name, input_node.name, chunk_size)
)
context += "(0, %d, chunk_size):\n" % (out_shape[chunk_ouput_dim])
return context
def _gen_loop_end(
chunk_inputs, chunk_non_compute_inputs, chunk_outputs, chunk_outputs_dim, node_list
):
chunk_outputs_name = chunk_outputs.name
chunk_outputs_idx = _find_idx_by_name(chunk_outputs_name, node_list)
chunk_output_shape = chunk_outputs.meta["tensor_meta"].shape
chunk_slice = _gen_chunk_slice_dim(
chunk_outputs_dim, "chunk_idx", chunk_output_shape
)
context = " chunk_result%s = %s; %s = None\n" % (chunk_slice, chunk_outputs_name, chunk_outputs_name)
context += (
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
)
# determine if its the last use for chunk input
for chunk_input in chunk_inputs + chunk_non_compute_inputs:
if all(
[
_find_idx_by_name(user.name, node_list) <= chunk_outputs_idx
for user in chunk_input.users.keys()
]
):
context += "; %s = None" % chunk_input.name
context += "\n"
return context
def _find_chunk_all_input_nodes(nodes: List[Node]):
"""
Find non-compute input and output node names.
input nodes are nodes used in the list
output nodes are nodes will use nodes in the list
"""
input_nodes = []
for node in nodes:
for input_node in node._input_nodes.keys():
if input_node not in nodes and input_node not in input_nodes:
input_nodes.append(input_node)
return input_nodes
def _find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
"""
Find non-compute input and output node names.
input nodes are nodes used in the list
output nodes are nodes will use nodes in the list
"""
input_nodes = []
output_nodes = []
# if a node has an input node which is not in the node list
# we treat that input node as the input of the checkpoint function
for node in nodes:
for input_node in node._input_nodes.keys():
if (
input_node not in nodes
and input_node not in input_nodes
and not _is_non_compute_node_except_placeholder(input_node)
):
input_nodes.append(input_node)
# if a node has a user node which is not in the node list
# we treat that user node as the node receiving the current node output
# TODO: it is unsafe to remove non compute node here
for node in nodes:
for output_node in node.users.keys():
if (
output_node not in nodes
and node not in output_nodes
and not _is_non_compute_node_except_placeholder_output(output_node)
):
output_nodes.append(node)
return input_nodes, output_nodes
def _find_idx_by_name(name, nodes_list):
for idx, node in enumerate(nodes_list):
if node.name == name:
return idx
raise RuntimeError("name %s not found in node list" % name)
def _replace_name(context, name_from, name_to):
patterns = [(" ", " "), (" ", "."), (" ", ","), ("(", ")"), ("(", ",")]
for p in patterns:
source = p[0] + name_from + p[1]
target = p[0] + name_to + p[1]
if source in context:
context = context.replace(source, target)
return context
def emit_code_with_chunk(
body,
ckpt_func,
nodes,
emit_node_func,
delete_unused_value_func,
meta_nodes,
meta_graph,
):
"""Emit code with nested activation checkpoint
When we detect some of the node.activation_checkpoint is a List, we will use
this function to emit the activation checkpoint codes.
Args:
body: forward code
ckpt_func: checkpoint functions code
nodes: graph.nodes
emit_node_func: function to emit node
delete_unused_value_func: function to remove the unused value
"""
node_list = list(nodes)
# find the chunk regions
chunk_region_search = ChunkRegionSearch(meta_graph)
chunk_search = chunk_region_search.search_region()
chunk_regions = [i["region"] for i in chunk_search]
chunk_starts = [i[0] for i in chunk_regions]
chunk_ends = [i[1] for i in chunk_regions]
chunk_inputs = [i["inputs"] for i in chunk_search]
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_search]
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_search]
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
j.name for i in chunk_inputs_non_chunk for j in i
]
chunk_outputs = [i["outputs"][0] for i in chunk_search]
chunk_outputs_dim = [i["outputs_dim"] for i in chunk_search]
node_idx = 0
region_idx = 0
within_chunk_region = False
while node_idx < len(node_list):
node = node_list[node_idx]
if node_idx in chunk_starts:
within_chunk_region = True
region_idx = chunk_starts.index(node_idx)
# add for loop
body.append(
_gen_loop_start(
chunk_inputs[region_idx],
chunk_outputs[region_idx],
chunk_outputs_dim[region_idx],
)
)
if within_chunk_region:
emit_node_func(node, body)
# replace input var with chunk var
for input_node_idx, input_node in enumerate(chunk_inputs[region_idx]):
for idx, dim in chunk_inputs_dim[region_idx][input_node_idx].items():
if idx == node_idx:
chunk_slice = _gen_chunk_slice_dim(
dim, "chunk_idx", _get_node_shape(input_node)
)
body[-1] = _replace_name(
body[-1], input_node.name, input_node.name + chunk_slice
)
body[-1] = " " + body[-1]
delete_unused_value_func(node, body, chunk_inputs_names)
else:
emit_node_func(node, body)
if node_idx not in chunk_inputs:
delete_unused_value_func(node, body, chunk_inputs_names)
if node_idx in chunk_ends:
body.append(
_gen_loop_end(
chunk_inputs[region_idx],
chunk_inputs_non_chunk[region_idx],
chunk_outputs[region_idx],
chunk_outputs_dim[region_idx],
node_list,
)
)
within_chunk_region = False
node_idx += 1
if CODEGEN_AVAILABLE:
class ChunkCodeGen(CodeGen):
def __init__(self, meta_graph):
super().__init__()
self.meta_graph = meta_graph
self.meta_node = list(meta_graph.graph.nodes)
def _gen_python_code(
self, nodes, root_module: str, namespace: _Namespace
) -> PythonCode:
free_vars: List[str] = []
body: List[str] = []
globals_: Dict[str, Any] = {}
wrapped_fns: Dict[str, None] = {}
# Wrap string in list to pass by reference
maybe_return_annotation: List[str] = [""]
def add_global(name_hint: str, obj: Any):
"""Add an obj to be tracked as a global.
We call this for names that reference objects external to the
Graph, like functions or types.
Returns: the global name that should be used to reference 'obj' in generated source.
"""
if (
_is_from_torch(obj) and obj != torch.device
): # to support registering torch.device
# HACK: workaround for how torch custom ops are registered. We
# can't import them like normal modules so they must retain their
# fully qualified name.
return _get_qualified_name(obj)
# normalize the name hint to get a proper identifier
global_name = namespace.create_name(name_hint, obj)
if global_name in globals_:
assert globals_[global_name] is obj
return global_name
globals_[global_name] = obj
return global_name
# set _custom_builtins here so that we needn't import colossalai in forward
_custom_builtins["colossalai"] = _CustomBuiltin(
"import colossalai", colossalai
)
# Pre-fill the globals table with registered builtins.
for name, (_, obj) in _custom_builtins.items():
add_global(name, obj)
def type_repr(o: Any):
if o == ():
# Empty tuple is used for empty tuple type annotation Tuple[()]
return "()"
typename = _type_repr(o)
if hasattr(o, "__origin__"):
# This is a generic type, e.g. typing.List[torch.Tensor]
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
origin_typename = add_global(_type_repr(origin_type), origin_type)
if hasattr(o, "__args__"):
# Assign global names for each of the inner type variables.
args = [type_repr(arg) for arg in o.__args__]
if len(args) == 0:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python < 3.9
return origin_typename
return f'{origin_typename}[{",".join(args)}]'
else:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python 3.9+
return origin_typename
# Common case: this is a regular module name like 'foo.bar.baz'
return add_global(typename, o)
def _format_args(
args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
) -> str:
def _get_repr(arg):
# Handle NamedTuples (if it has `_fields`) via add_global.
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
qualified_name = _get_qualified_name(type(arg))
global_name = add_global(qualified_name, type(arg))
return f"{global_name}{repr(tuple(arg))}"
return repr(arg)
args_s = ", ".join(_get_repr(a) for a in args)
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items())
if args_s and kwargs_s:
return f"{args_s}, {kwargs_s}"
return args_s or kwargs_s
# Run through reverse nodes and record the first instance of a use
# of a given node. This represents the *last* use of the node in the
# execution order of the program, which we will use to free unused
# values
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
_delete_free_var_from_last_use(user_to_last_uses)
# NOTE: we add a variable to distinguish body and ckpt_func
def delete_unused_values(user: Node, body, to_keep=[]):
"""
Delete values after their last use. This ensures that values that are
not used in the remainder of the code are freed and the memory usage
of the code is optimal.
"""
if user.op == "placeholder":
return
if user.op == "output":
body.append("\n")
return
nodes_to_delete = user_to_last_uses.get(user, [])
nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep]
if len(nodes_to_delete):
to_delete_str = " = ".join(
[repr(n) for n in nodes_to_delete] + ["None"]
)
body.append(f"; {to_delete_str}\n")
else:
body.append("\n")
# NOTE: we add a variable to distinguish body and ckpt_func
def emit_node(node: Node, body):
maybe_type_annotation = (
"" if node.type is None else f" : {type_repr(node.type)}"
)
if node.op == "placeholder":
assert isinstance(node.target, str)
maybe_default_arg = (
"" if not node.args else f" = {repr(node.args[0])}"
)
free_vars.append(
f"{node.target}{maybe_type_annotation}{maybe_default_arg}"
)
raw_name = node.target.replace("*", "")
if raw_name != repr(node):
body.append(f"{repr(node)} = {raw_name}\n")
return
elif node.op == "call_method":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
f"({_format_args(node.args[1:], node.kwargs)})"
)
return
elif node.op == "call_function":
assert callable(node.target)
# pretty print operators
if (
node.target.__module__ == "_operator"
and node.target.__name__ in magic_methods
):
assert isinstance(node.args, tuple)
body.append(
f"{repr(node)}{maybe_type_annotation} = "
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
)
return
# pretty print inplace operators; required for jit.script to work properly
# not currently supported in normal FX graphs, but generated by torchdynamo
if (
node.target.__module__ == "_operator"
and node.target.__name__ in inplace_methods
):
body.append(
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
)
return
qualified_name = _get_qualified_name(node.target)
global_name = add_global(qualified_name, node.target)
# special case for getattr: node.args could be 2-argument or 3-argument
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
if (
global_name == "getattr"
and isinstance(node.args, tuple)
and isinstance(node.args[1], str)
and node.args[1].isidentifier()
and len(node.args) == 2
):
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
)
return
body.append(
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
)
if node.meta.get("is_wrapped", False):
wrapped_fns.setdefault(global_name)
return
elif node.op == "call_module":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = "
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
)
return
elif node.op == "get_attr":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}"
)
return
elif node.op == "output":
if node.type is not None:
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
body.append(self.generate_output(node.args[0]))
return
raise NotImplementedError(f"node: {node.op} {node.target}")
# Modified for activation checkpointing
ckpt_func = []
# if any node has a list of labels for activation_checkpoint, we
# will use nested type of activation checkpoint codegen
emit_code_with_chunk(
body,
ckpt_func,
nodes,
emit_node,
delete_unused_values,
self.meta_node,
self.meta_graph,
)
if len(body) == 0:
# If the Graph has no non-placeholder nodes, no lines for the body
# have been emitted. To continue to have valid Python code, emit a
# single pass statement
body.append("pass\n")
if len(wrapped_fns) > 0:
wrap_name = add_global("wrap", torch.fx.wrap)
wrap_stmts = "\n".join(
[f'{wrap_name}("{name}")' for name in wrapped_fns]
)
else:
wrap_stmts = ""
if self._body_transformer:
body = self._body_transformer(body)
for name, value in self.additional_globals():
add_global(name, value)
# as we need colossalai.utils.checkpoint, we need to import colossalai
# in forward function
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
prologue = "".join(ckpt_func) + prologue
prologue = prologue
code = "".join(body)
code = "\n".join(" " + line for line in code.split("\n"))
fn_code = f"""
{wrap_stmts}
{prologue}
{code}"""
# print(fn_code)
return PythonCode(fn_code, globals_)