ColossalAI/colossalai/trainer/hooks/_lr_scheduler_hook.py

44 lines
1.7 KiB
Python

from colossalai.registry import HOOKS
from torch import Tensor
from ._metric_hook import LearningRateMetric, MetricHook
@HOOKS.register_module
class LRSchedulerHook(MetricHook):
"""Build LR scheduler
:param lr_scheduler: LR scheduler
:param by_epoch: If `True`, the LR will be scheduled every epoch. Else, the LR will be scheduled every batch
:type by_epoch: bool
:param store_lr_in_state: If `True`, store the learning rate in each state, defaults to `True`
:type store_lr_in_state: bool, optional
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 1
:type priority: int, optional
"""
def __init__(
self,
lr_scheduler,
by_epoch: bool,
store_lr_in_state: bool = True,
priority: int = 1,
):
super().__init__(priority=priority)
self.by_epoch = by_epoch
self.lr_scheduler = lr_scheduler
self.store_lr_in_state = store_lr_in_state
def after_hook_is_attached(self, trainer):
trainer.states['metrics']['train']['LR'] = LearningRateMetric(epoch_only=self.by_epoch,
initial_lr=self.lr_scheduler.get_last_lr()[0])
def after_train_epoch(self, trainer):
if self.by_epoch:
self.lr_scheduler.step()
trainer.states['metrics']['train']['LR'].update(self.lr_scheduler.get_last_lr()[0])
def after_train_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor):
if not self.by_epoch:
self.lr_scheduler.step()
trainer.states['metrics']['train']['LR'].update(self.lr_scheduler.get_last_lr()[0])