mirror of https://github.com/hpcaitech/ColossalAI
419 lines
18 KiB
Python
419 lines
18 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import argparse
|
|
import os
|
|
import pprint
|
|
from pathlib import Path
|
|
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.modules.loss import _Loss
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
from torch.optim.optimizer import Optimizer
|
|
from torch.utils.data import DataLoader
|
|
|
|
from colossalai.amp import AMP_TYPE, convert_to_amp
|
|
from colossalai.amp.naive_amp import NaiveAMPModel
|
|
from colossalai.builder.builder import build_gradient_handler
|
|
from colossalai.context import Config, ConfigException, ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.engine import Engine
|
|
from colossalai.global_variables import moe_env
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer
|
|
from colossalai.utils import (accumulate_gradient, get_current_device, is_using_ddp, is_using_pp, is_using_sequence,
|
|
sync_model_param)
|
|
from colossalai.zero import convert_to_zero, ShardedOptimizer
|
|
from colossalai.engine.ophooks import register_ophooks_recursively, BaseOpHook
|
|
|
|
|
|
def get_default_parser():
|
|
"""Reads user command line and uses an argument parser to parse the input arguments.
|
|
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
|
|
|
|
:return: Returns the parser with the default arguments, the user may add customized arguments into this parser
|
|
:rtype: Namespace
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--config', type=str, help='path to the config file')
|
|
parser.add_argument('--host', type=str, help='the master address for distributed training')
|
|
parser.add_argument('--port', type=int, help='the master port for distributed training')
|
|
parser.add_argument('--world_size', type=int, help='world size for distributed training')
|
|
parser.add_argument('--rank', type=int, help='rank for the default process group')
|
|
parser.add_argument('--local_rank', type=int, help='local rank on the node')
|
|
parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication')
|
|
return parser
|
|
|
|
|
|
def launch(config: Union[str, Path, Config, Dict],
|
|
rank: int,
|
|
world_size: int,
|
|
host: str,
|
|
port: int,
|
|
backend: str = 'nccl',
|
|
local_rank: int = None,
|
|
seed: int = 1024,
|
|
verbose: bool = True):
|
|
"""This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input
|
|
arguments are not given. Then initialize and set distributed environment by calling global_context's functions.
|
|
|
|
:param config: Config file or config file path are both acceptable
|
|
:type config: Union[str, dict, Config]
|
|
:param rank: Rank for the default process group
|
|
:type rank: int
|
|
:param world_size: World size of the default process group
|
|
:type world_size: int
|
|
:param host: The master address for distributed training
|
|
:type host: str
|
|
:param port: The master port for distributed training
|
|
:type port: str
|
|
:param backend: Backend for torch.distributed
|
|
:type backend: str, optional
|
|
:param local_rank: Rank for the process on the node and is used to set the default CUDA device, defaults to None.
|
|
If local_rank = None, the default device ordinal will be calculated automatically
|
|
:type local_rank: int, optional
|
|
:param seed: Specified random seed for every processes
|
|
:type seed: int, optional
|
|
:param verbose: Whether to print logs
|
|
:type verbose: bool, optional
|
|
:raises Exception: Raise exception when config type is wrong
|
|
"""
|
|
gpc.verbose = verbose
|
|
|
|
# set config
|
|
assert isinstance(config, (Config, str, Path, dict)), \
|
|
f'expected argument config to be Config, str or Path, but got {type(config)}'
|
|
if not isinstance(config, Config) and isinstance(config, dict):
|
|
config = Config(config)
|
|
if isinstance(config, (str, Path)):
|
|
config = Config.from_file(config)
|
|
gpc.load_config(config)
|
|
|
|
# init default process group
|
|
gpc.init_global_dist(rank, world_size, backend, host, port)
|
|
|
|
# init process groups for different parallel modes from config
|
|
gpc.init_parallel_groups()
|
|
|
|
# set cuda device
|
|
if torch.cuda.is_available():
|
|
# if local rank is not given, calculate automatically
|
|
gpc.set_device(local_rank)
|
|
|
|
gpc.set_seed(seed)
|
|
|
|
if verbose:
|
|
logger = get_dist_logger()
|
|
logger.info(
|
|
f'Distributed environment is initialized, '
|
|
f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, '
|
|
f'tensor parallel size: {gpc.tensor_parallel_size}',
|
|
ranks=[0])
|
|
|
|
|
|
def launch_from_slurm(config: Union[str, Path, Config, Dict],
|
|
host: str,
|
|
port: int,
|
|
backend: str = 'nccl',
|
|
seed: int = 1024,
|
|
verbose: bool = True):
|
|
"""A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables
|
|
set by SLURM
|
|
|
|
:param config: Config file or config file path are both acceptable
|
|
:type config: Union[str, dict, Config]
|
|
:param host: The master address for distributed training
|
|
:type host: str
|
|
:param port: The master port for distributed training
|
|
:type port: str
|
|
:param backend: Backend for torch.distributed
|
|
:type backend: str, optional
|
|
:param seed: Specified random seed for every processes
|
|
:type seed: int, optional
|
|
:param verbose: Whether to print logs
|
|
:type verbose: bool, optional
|
|
"""
|
|
rank = int(os.environ['SLURM_PROCID'])
|
|
world_size = int(os.environ['SLURM_NPROCS'])
|
|
launch(config=config,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
host=host,
|
|
port=port,
|
|
backend=backend,
|
|
seed=seed,
|
|
verbose=verbose)
|
|
|
|
|
|
def launch_from_openmpi(config: Union[str, Path, Config, Dict],
|
|
host: str,
|
|
port: int,
|
|
backend: str = 'nccl',
|
|
seed: int = 1024,
|
|
verbose: bool = True):
|
|
"""A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables
|
|
set by OpenMPI
|
|
|
|
:param config: Config file or config file path are both acceptable
|
|
:type config: Union[str, dict, Config]
|
|
:param host: The master address for distributed training
|
|
:type host: str
|
|
:param port: The master port for distributed training
|
|
:type port: str
|
|
:param backend: Backend for torch.distributed
|
|
:type backend: str, optional
|
|
:param seed: Specified random seed for every processes
|
|
:type seed: int, optional
|
|
:param verbose: Whether to print logs
|
|
:type verbose: bool, optional
|
|
"""
|
|
rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
|
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
|
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
|
launch(config=config,
|
|
local_rank=local_rank,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
host=host,
|
|
port=port,
|
|
backend=backend,
|
|
seed=seed,
|
|
verbose=verbose)
|
|
|
|
|
|
def launch_from_torch(config: Union[str, Path, Config, Dict],
|
|
backend: str = 'nccl',
|
|
seed: int = 1024,
|
|
verbose: bool = True):
|
|
"""A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size
|
|
from the environment variables set by PyTorch
|
|
|
|
:param config: Config file or config file path are both acceptable
|
|
:type config: Union[str, dict, Config]
|
|
:param backend: Backend for torch.distributed
|
|
:type backend: str, optional
|
|
:param seed: Specified random seed for every processes
|
|
:type seed: int, optional
|
|
:param verbose: Whether to print logs
|
|
:type verbose: bool, optional
|
|
"""
|
|
rank = int(os.environ['RANK'])
|
|
local_rank = int(os.environ['LOCAL_RANK'])
|
|
world_size = int(os.environ['WORLD_SIZE'])
|
|
host = os.environ['MASTER_ADDR']
|
|
port = int(os.environ['MASTER_PORT'])
|
|
launch(config=config,
|
|
local_rank=local_rank,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
host=host,
|
|
port=port,
|
|
backend=backend,
|
|
seed=seed,
|
|
verbose=verbose)
|
|
|
|
|
|
def initialize(model: Union[nn.Module, List[nn.Module]],
|
|
optimizer: Union[Optimizer, List[Optimizer]],
|
|
criterion: Union[_Loss, List[_Loss]],
|
|
train_dataloader: Optional[Union[Iterable, List[Iterable]]] = None,
|
|
test_dataloader: Optional[Union[Iterable, List[Iterable]]] = None,
|
|
lr_scheduler: _LRScheduler = None,
|
|
ophooks: List[BaseOpHook] = [],
|
|
verbose: bool = True
|
|
) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]:
|
|
"""Core function to wrap the essential training components with our functionality based on the config which is
|
|
loaded into gpc.config.
|
|
|
|
:param model: Your model instance
|
|
:type model: :class:`torch.nn.Module`
|
|
:param optimizer: Your optimizer instance
|
|
:type optimizer: :class:`torch.optim.optimizer.Optimizer`
|
|
:param criterion: Your criterion instance
|
|
:type criterion: :class:`torch.nn.modules.loss._Loss`
|
|
:param train_dataloader: Dataloader for training
|
|
:type train_dataloader: :class:`torch.utils.data.DataLoader`, optional
|
|
:param test_dataloader: Dataloader for testing
|
|
:type test_dataloader: :class:`torch.utils.data.DataLoader`, optional
|
|
:param lr_scheduler: Your lr scheduler instance
|
|
:type lr_scheduler: :class:`torch.nn.lr_scheduler._LRScheduler`, optional
|
|
:param verbose: Whether to print logs
|
|
:type verbose: bool, optional
|
|
:return: (engine, train_dataloader, test_dataloader, lr_scheduler)
|
|
:rtype: Tuple
|
|
"""
|
|
# get logger
|
|
logger = get_dist_logger()
|
|
gpc.verbose = verbose
|
|
|
|
# get config from gpc
|
|
config = gpc.config
|
|
|
|
# print config
|
|
if verbose:
|
|
logger.info(
|
|
f"\n========== Your Config ========\n"
|
|
f"{pprint.pformat(gpc.config)}\n"
|
|
f"================================\n",
|
|
ranks=[0])
|
|
|
|
# cudnn
|
|
cudnn_benchmark = config.get('cudnn_benchmark', True)
|
|
cudnn_deterministic = config.get('cudnn_deterministic', False)
|
|
torch.backends.cudnn.benchmark = cudnn_benchmark
|
|
torch.backends.cudnn.deterministic = cudnn_deterministic
|
|
if verbose:
|
|
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
|
|
|
|
# first sync model across dp ranks
|
|
model.to(get_current_device())
|
|
use_zero3 = hasattr(gpc.config, 'zero') and gpc.config.zero.level == 3
|
|
if not moe_env.is_initialized() and not use_zero3:
|
|
if is_using_sequence():
|
|
sync_model_param(model, ParallelMode.SEQUENCE_DP)
|
|
elif is_using_ddp():
|
|
sync_model_param(model, ParallelMode.DATA)
|
|
else:
|
|
logger.warning(
|
|
"The parameters of models is not automatically synchronized.\n"
|
|
"Please make sure that all parameters are the same in data parallel group.",
|
|
ranks=[0])
|
|
|
|
# check amp and zero
|
|
fp16_cfg = gpc.config.get('fp16', None)
|
|
zero_cfg = gpc.config.get('zero', None)
|
|
|
|
if fp16_cfg is not None and fp16_cfg.mode is not None and zero_cfg is not None:
|
|
raise ConfigException(
|
|
"It is not allowed to set fp16 and zero configuration in your config file at the same time")
|
|
|
|
# clip grad norm
|
|
clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0)
|
|
if clip_grad_norm > 0:
|
|
if zero_cfg is not None:
|
|
raise ConfigException(
|
|
"clip_grad_norm should be specified with zero, you should specify clip_grad in zero configuration")
|
|
|
|
# initialize amp
|
|
amp_mode = None
|
|
if fp16_cfg is not None and fp16_cfg.mode is not None:
|
|
cfg_ = fp16_cfg.copy()
|
|
amp_mode = cfg_.pop('mode')
|
|
if is_using_pp():
|
|
assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently'
|
|
if amp_mode == AMP_TYPE.NAIVE:
|
|
cfg_['clip_grad'] = clip_grad_norm
|
|
model, optimizer, criterion = convert_to_amp(model=model,
|
|
optimizer=optimizer,
|
|
criterion=criterion,
|
|
mode=amp_mode,
|
|
amp_config=cfg_)
|
|
|
|
if zero_cfg is not None:
|
|
cfg_ = zero_cfg.copy()
|
|
level = cfg_.pop('level')
|
|
model, optimizer = convert_to_zero(model=model, optimizer=optimizer, level=level, zero_config=cfg_)
|
|
|
|
# gradient handler
|
|
gradient_handler_cfg = gpc.config.get('gradient_handler', None)
|
|
if gradient_handler_cfg is None:
|
|
# if gradient handler is not specified in the configuration file,
|
|
# check in the following order
|
|
# 1. if optimizer is ZERO, then use zero grad handler
|
|
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
|
|
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
|
|
if isinstance(optimizer, ShardedOptimizer):
|
|
gradient_handler_cfg = [dict(type='ZeROGradientHandler')]
|
|
if verbose:
|
|
logger.info(
|
|
"Training with zero is detected, ZeROGradientHandler is automatically "
|
|
"added even though not specified in the configuration",
|
|
ranks=[0])
|
|
elif is_using_ddp() and moe_env.is_initialized():
|
|
gradient_handler_cfg = [dict(type='MoeGradientHandler')]
|
|
if verbose:
|
|
logger.info(
|
|
"Data parallel training is detected with moe parallel, MoeGradientHandler is automatically "
|
|
"added even though not specified in the configuration",
|
|
ranks=[0])
|
|
elif is_using_sequence():
|
|
model = DDP(model,
|
|
process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
|
|
device_ids=[torch.cuda.current_device()])
|
|
if verbose:
|
|
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism',
|
|
ranks=[0])
|
|
elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE:
|
|
model = DDP(model, process_group=gpc.get_group(ParallelMode.DATA), device_ids=[torch.cuda.current_device()])
|
|
if verbose:
|
|
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0])
|
|
elif is_using_ddp():
|
|
gradient_handler_cfg = [dict(type='DataParallelGradientHandler')]
|
|
if verbose:
|
|
logger.info(
|
|
"Data parallel training is detected when using pipeline parallel, "
|
|
"DataParallelGradientHandler is automatically "
|
|
"added even though not specified in the configuration",
|
|
ranks=[0])
|
|
# add pipeline parallel gradient handler, if pipeline shared module is detected
|
|
for param in model.parameters():
|
|
if getattr(param, 'pipeline_shared_module_pg', None) is not None:
|
|
if gradient_handler_cfg is None:
|
|
gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')]
|
|
else:
|
|
gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler'))
|
|
if verbose:
|
|
logger.info(
|
|
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
|
|
"added even though not specified in the configuration",
|
|
ranks=[0])
|
|
break
|
|
else:
|
|
if not isinstance(gradient_handler_cfg, list):
|
|
raise ConfigException(
|
|
f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}"
|
|
)
|
|
|
|
# turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time
|
|
# to avoid duplicated buffer synchronization
|
|
if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel):
|
|
model.module.sync_buffer = False
|
|
|
|
if gradient_handler_cfg is None:
|
|
gradient_handlers = None
|
|
if verbose and not isinstance(model, DDP):
|
|
logger.warning(
|
|
"No PyTorch DDP or gradient handler is set up, please make sure you do not need "
|
|
"to all-reduce the gradients after a training step.",
|
|
ranks=[0])
|
|
else:
|
|
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
|
|
|
|
# check if optimizer is ColossalaiOptimizer
|
|
if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizer)):
|
|
optimizer = ColossalaiOptimizer(optim=optimizer)
|
|
|
|
# gradient accumulation
|
|
grad_accum_size = gpc.config.get('gradient_accumulation', None)
|
|
if grad_accum_size is not None:
|
|
optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient(model=model,
|
|
optimizer=optimizer,
|
|
dataloader=train_dataloader,
|
|
accumulate_size=grad_accum_size,
|
|
gradient_handlers=gradient_handlers,
|
|
lr_scheduler=lr_scheduler)
|
|
|
|
engine = Engine(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
criterion=criterion,
|
|
gradient_handlers=gradient_handlers,
|
|
clip_grad_norm=clip_grad_norm,
|
|
ophook_list=ophooks
|
|
)
|
|
|
|
return engine, train_dataloader, test_dataloader, lr_scheduler
|