mirror of https://github.com/hpcaitech/ColossalAI
186 lines
6.7 KiB
Python
186 lines
6.7 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import math
|
|
|
|
import torch.distributed as dist
|
|
from colossalai.global_variables import tensor_parallel_env as env
|
|
from colossalai.registry import DIST_GROUP_INITIALIZER
|
|
|
|
from ..parallel_mode import ParallelMode
|
|
from .process_group_initializer import ProcessGroupInitializer
|
|
|
|
|
|
def _check_depth_env_var(depth):
|
|
# check global variable
|
|
env_depth = env.depth_3d
|
|
|
|
if env_depth:
|
|
assert int(env_depth) == depth, \
|
|
'DEPTH_3D has been set in the current environment and ' \
|
|
'does not match with the value passed to this initialized'
|
|
else:
|
|
env.depth_3d = depth
|
|
|
|
|
|
class Initializer_3D_Input(ProcessGroupInitializer):
|
|
"""3D tensor parallel initialization among input.
|
|
|
|
:param num_group: The number of all tensor groups
|
|
:param depth: Depth of 3D parallelism
|
|
:param args: Args used in base class
|
|
|
|
:type num_group: int
|
|
:type depth: int
|
|
"""
|
|
|
|
def __init__(self, num_group: int, depth: int, *args):
|
|
super().__init__(*args)
|
|
self.num_group = num_group
|
|
self.depth = depth
|
|
|
|
def init_dist_group(self):
|
|
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
|
|
|
:return: 3D tensor parallelism's information among input
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.PARALLEL_3D_INPUT
|
|
env.input_group_3d = mode
|
|
|
|
for h in range(self.num_group):
|
|
for i in range(self.depth):
|
|
for k in range(self.depth):
|
|
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
|
|
group = dist.new_group(ranks)
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
class Initializer_3D_Weight(ProcessGroupInitializer):
|
|
"""3D tensor parallel initialization among weight.
|
|
|
|
:param num_group: The number of all tensor groups
|
|
:param depth: Depth of 3D parallelism
|
|
:param args: Args used in base class
|
|
|
|
:type num_group: int
|
|
:type depth: int
|
|
"""
|
|
|
|
def __init__(self, num_group: int, depth: int, *args):
|
|
super().__init__(*args)
|
|
self.num_group = num_group
|
|
self.depth = depth
|
|
|
|
def init_dist_group(self):
|
|
"""Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu.
|
|
|
|
:return: 3D tensor parallelism's information among weight
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.PARALLEL_3D_WEIGHT
|
|
env.weight_group_3d = mode
|
|
|
|
for h in range(self.num_group):
|
|
for k in range(self.depth):
|
|
for j in range(self.depth):
|
|
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
|
|
group = dist.new_group(ranks)
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
class Initializer_3D_Output(ProcessGroupInitializer):
|
|
"""3D tensor parallel initialization among output.
|
|
|
|
:param num_group: The number of all tensor groups
|
|
:param depth: Depth of 3D parallelism
|
|
:param args: Args used in base class
|
|
|
|
:type num_group: int
|
|
:type depth: int
|
|
"""
|
|
|
|
def __init__(self, num_group: int, depth: int, *args):
|
|
super().__init__(*args)
|
|
self.num_group = num_group
|
|
self.depth = depth
|
|
|
|
def init_dist_group(self):
|
|
"""Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu.
|
|
|
|
:return: 3D tensor parallelism's information among output
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.PARALLEL_3D_OUTPUT
|
|
env.output_group_3d = mode
|
|
|
|
for h in range(self.num_group):
|
|
for i in range(self.depth):
|
|
for j in range(self.depth):
|
|
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
|
|
group = dist.new_group(ranks)
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
@DIST_GROUP_INITIALIZER.register_module
|
|
class Initializer_3D(ProcessGroupInitializer):
|
|
"""Serve as the single entry point to 3D parallel initialization.
|
|
|
|
:param args: Args used to initialize ProcessGroupInitializer
|
|
"""
|
|
|
|
def __init__(self, *args):
|
|
super().__init__(*args)
|
|
self.num_group = self.world_size // self.tensor_parallel_size
|
|
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
|
|
assert self.tensor_parallel_size == self.depth ** 3, \
|
|
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
|
|
_check_depth_env_var(self.depth)
|
|
|
|
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
|
|
self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args)
|
|
self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args)
|
|
|
|
def init_dist_group(self):
|
|
"""Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu.
|
|
|
|
:return: 3D tensor parallelism's information
|
|
:rtype: list of Tuples (local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
"""
|
|
parallel_setting = [self.input_initializer.init_dist_group(), self.weight_initializer.init_dist_group(),
|
|
self.output_initializer.init_dist_group()]
|
|
return parallel_setting
|