mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
12 KiB
334 lines
12 KiB
from functools import partial
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
from colossalai.initialize import launch
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
from colossalai.tensor.utils import mix_gather_simulator
|
|
from colossalai.utils import free_port
|
|
|
|
|
|
def check_mix_gather_S0S1(device_mesh, rank):
|
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda()
|
|
(f, b) = (0, 1)
|
|
f_target_pair = (f, [0])
|
|
b_target_pair = (b, [1])
|
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair)
|
|
tensor_slice = [4, 2] # (4, 2)
|
|
rank_slice = 4
|
|
f_start = (rank // rank_slice) * tensor_slice[0]
|
|
b_start = (rank % rank_slice) * tensor_slice[1]
|
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0],
|
|
b_start:b_start + tensor_slice[1]].contiguous().cuda()
|
|
|
|
dim_partition_dict = {0: [0], 1: [1]}
|
|
|
|
# DistSpec:
|
|
# shard_sequence: S0,S1
|
|
# device_mesh_shape: (2, 4)
|
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD,
|
|
sharding_spec=source_spec,
|
|
gather_dim=gather_dim,
|
|
logical_process_axis=logical_process_axes,
|
|
forward_only=True,
|
|
mix_gather=True)
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_two_all_gather_S0S1(device_mesh, rank):
|
|
tensor_width = 8
|
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda()
|
|
|
|
dim_partition_dict = {0: [0], 1: [1]}
|
|
|
|
tensor_slice = [tensor_width // 2, tensor_width // 4] # (4, 2)
|
|
rank_slice = 4
|
|
f_start = (rank // rank_slice) * tensor_slice[0]
|
|
b_start = (rank % rank_slice) * tensor_slice[1]
|
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0],
|
|
b_start:b_start + tensor_slice[1]].contiguous().cuda()
|
|
|
|
# DistSpec:
|
|
# shard_sequence: S0,S1
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=0,
|
|
logical_process_axis=0)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
dim_partition_dict = {1: [1]}
|
|
# DistSpec:
|
|
# shard_sequence: R,S1
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=1,
|
|
logical_process_axis=1)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_mix_gather_S1S0(device_mesh, rank):
|
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda()
|
|
(f, b) = (0, 1)
|
|
f_target_pair = (f, [1])
|
|
b_target_pair = (b, [0])
|
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair)
|
|
tensor_slice = [2, 4]
|
|
rank_slice = 4
|
|
f_start = (rank % rank_slice) * tensor_slice[0]
|
|
b_start = (rank // rank_slice) * tensor_slice[1]
|
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0],
|
|
b_start:b_start + tensor_slice[1]].contiguous().cuda()
|
|
|
|
dim_partition_dict = {0: [1], 1: [0]}
|
|
|
|
# DistSpec:
|
|
# shard_sequence: S1,S0
|
|
# device_mesh_shape: (2, 4)
|
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD,
|
|
sharding_spec=source_spec,
|
|
gather_dim=gather_dim,
|
|
logical_process_axis=logical_process_axes,
|
|
forward_only=True,
|
|
mix_gather=True)
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_two_all_gather_S1S0(device_mesh, rank):
|
|
tensor_width = 8
|
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda()
|
|
|
|
tensor_slice = [tensor_width // 4, tensor_width // 2] # (4, 2)
|
|
rank_slice = 4
|
|
f_start = (rank % rank_slice) * tensor_slice[0]
|
|
b_start = (rank // rank_slice) * tensor_slice[1]
|
|
tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0],
|
|
b_start:b_start + tensor_slice[1]].contiguous().cuda()
|
|
|
|
dim_partition_dict = {0: [1], 1: [0]}
|
|
|
|
# DistSpec:
|
|
# shard_sequence: S1,S0
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:1)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=0,
|
|
logical_process_axis=1)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
dim_partition_dict = {1: [0]}
|
|
# DistSpec:
|
|
# shard_sequence: R,S0
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:0)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=1,
|
|
logical_process_axis=0)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_mix_gather_S01R(device_mesh, rank):
|
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda()
|
|
(f, b) = (0, 1)
|
|
f_target_pair = (f, [0, 1])
|
|
b_target_pair = (b, [])
|
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair)
|
|
tensor_to_comm = tensor_to_check[rank:rank + 1, :].contiguous().cuda()
|
|
|
|
dim_partition_dict = {0: [0, 1]}
|
|
# DistSpec:
|
|
# shard_sequence: S01,R
|
|
# device_mesh_shape: (2, 4)
|
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD,
|
|
sharding_spec=source_spec,
|
|
gather_dim=gather_dim,
|
|
logical_process_axis=logical_process_axes,
|
|
forward_only=True,
|
|
mix_gather=True)
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_two_all_gather_S01R(device_mesh, rank):
|
|
tensor_width = 8
|
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda()
|
|
|
|
rank_stride = tensor_width // 8
|
|
tensor_to_comm = tensor_to_check[rank:rank + rank_stride, :].contiguous().cuda()
|
|
|
|
dim_partition_dict = {0: [0, 1]}
|
|
|
|
# DistSpec:
|
|
# shard_sequence: S01, R
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=0,
|
|
logical_process_axis=1)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
dim_partition_dict = {0: [0]}
|
|
|
|
# DistSpec:
|
|
# shard_sequence: S1, R
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:1)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=0,
|
|
logical_process_axis=0)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_mix_gather_RS01(device_mesh, rank):
|
|
tensor_to_check = torch.arange(64).reshape((8, 8)).cuda()
|
|
|
|
(f, b) = (0, 1)
|
|
f_target_pair = (f, [])
|
|
b_target_pair = (b, [0, 1])
|
|
gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair)
|
|
tensor_to_comm = tensor_to_check[:, rank:rank + 1].contiguous().cuda()
|
|
|
|
dim_partition_dict = {1: [0, 1]}
|
|
# DistSpec:
|
|
# shard_sequence: R, S01
|
|
# device_mesh_shape: (2, 4)
|
|
source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD,
|
|
sharding_spec=source_spec,
|
|
gather_dim=gather_dim,
|
|
logical_process_axis=logical_process_axes,
|
|
forward_only=True,
|
|
mix_gather=True)
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_two_all_gather_RS01(device_mesh, rank):
|
|
tensor_width = 8
|
|
tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda()
|
|
|
|
rank_stride = tensor_width // 8
|
|
tensor_to_comm = tensor_to_check[:, rank:rank + rank_stride].contiguous().cuda()
|
|
|
|
dim_partition_dict = {1: [0, 1]}
|
|
|
|
# DistSpec:
|
|
# shard_sequence: R, S01
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:0)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=1,
|
|
logical_process_axis=1)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
dim_partition_dict = {1: [0]}
|
|
|
|
# DistSpec:
|
|
# shard_sequence: R, S1
|
|
# device_mesh_shape: (2, 4)
|
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
|
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1)
|
|
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
sharding_spec,
|
|
gather_dim=1,
|
|
logical_process_axis=0)
|
|
|
|
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
|
|
|
|
assert tensor_to_comm.equal(tensor_to_check)
|
|
|
|
|
|
def check_comm(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
physical_mesh_id = torch.arange(0, 8)
|
|
assert rank == gpc.get_global_rank()
|
|
|
|
mesh_shape = (2, 4)
|
|
# [[0, 1, 2, 3],
|
|
# [4, 5, 6, 7]]
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True, need_flatten=True)
|
|
|
|
check_mix_gather_S0S1(device_mesh, rank)
|
|
|
|
check_two_all_gather_S0S1(device_mesh, rank)
|
|
|
|
check_mix_gather_S1S0(device_mesh, rank)
|
|
|
|
check_two_all_gather_S1S0(device_mesh, rank)
|
|
|
|
check_mix_gather_S01R(device_mesh, rank)
|
|
|
|
check_two_all_gather_S01R(device_mesh, rank)
|
|
|
|
check_mix_gather_RS01(device_mesh, rank)
|
|
|
|
check_two_all_gather_RS01(device_mesh, rank)
|
|
|
|
|
|
@pytest.mark.skip(reason="Skip because the check functions assume 8 GPUS but CI only have 4 GPUs")
|
|
def test_mix_gather():
|
|
world_size = 8
|
|
run_func = partial(check_comm, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_mix_gather()
|