mirror of https://github.com/hpcaitech/ColossalAI
159 lines
6.3 KiB
Python
159 lines
6.3 KiB
Python
import math
|
|
import time
|
|
from abc import ABC
|
|
from typing import Optional
|
|
|
|
import loralib as lora
|
|
import torch
|
|
import torch.distributed as dist
|
|
import wandb
|
|
from coati.models.loss import GPTLMLoss
|
|
from torch import nn
|
|
from torch.optim import Adam, Optimizer
|
|
from torch.optim.lr_scheduler import LambdaLR
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from tqdm import tqdm
|
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
|
from transformers.trainer import get_scheduler
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from .strategies import Strategy
|
|
from .utils import is_rank_0
|
|
|
|
|
|
class SFTTrainer(ABC):
|
|
"""
|
|
Trainer to use while training reward model.
|
|
|
|
Args:
|
|
model (torch.nn.Module): the model to train
|
|
strategy (Strategy): the strategy to use for training
|
|
optim(Optimizer): the optimizer to use for training
|
|
train_dataloader: the dataloader to use for training
|
|
eval_dataloader: the dataloader to use for evaluation
|
|
batch_size (int, defaults to 1): the batch size while training
|
|
max_epochs (int, defaults to 2): the number of epochs to train
|
|
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
strategy: Strategy,
|
|
optim: Optimizer,
|
|
train_dataloader: DataLoader,
|
|
eval_dataloader: DataLoader = None,
|
|
batch_size: int = 1,
|
|
max_epochs: int = 2,
|
|
accimulation_steps: int = 8,
|
|
) -> None:
|
|
super().__init__()
|
|
self.strategy = strategy
|
|
self.epochs = max_epochs
|
|
self.train_dataloader = train_dataloader
|
|
self.eval_dataloader = eval_dataloader
|
|
|
|
self.model = strategy.setup_model(model)
|
|
if "DDP" in str(self.strategy):
|
|
self.model = self.model.module
|
|
self.optimizer = strategy.setup_optimizer(optim, self.model)
|
|
|
|
self.accimulation_steps = accimulation_steps
|
|
num_update_steps_per_epoch = len(train_dataloader) // self.accimulation_steps
|
|
max_steps = math.ceil(self.epochs * num_update_steps_per_epoch)
|
|
|
|
self.scheduler = get_scheduler("cosine",
|
|
self.optimizer,
|
|
num_warmup_steps=math.ceil(max_steps * 0.03),
|
|
num_training_steps=max_steps)
|
|
|
|
def fit(self, logger, log_interval=10):
|
|
wandb.init(project="Coati", name=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
|
|
wandb.watch(self.model)
|
|
total_loss = 0
|
|
# epoch_bar = tqdm(range(self.epochs), desc='Epochs', disable=not is_rank_0())
|
|
step_bar = tqdm(range(len(self.train_dataloader) // self.accimulation_steps * self.epochs),
|
|
desc=f'steps',
|
|
disable=not is_rank_0())
|
|
for epoch in range(self.epochs):
|
|
|
|
# process_bar = tqdm(range(len(self.train_dataloader)), desc=f'Train process for{epoch}', disable=not is_rank_0())
|
|
# train
|
|
self.model.train()
|
|
for batch_id, batch in enumerate(self.train_dataloader):
|
|
|
|
prompt_ids = batch["input_ids"].to(torch.cuda.current_device())
|
|
p_mask = batch["attention_mask"].to(torch.cuda.current_device())
|
|
labels = batch["labels"].to(torch.cuda.current_device())
|
|
# prompt_ids = prompt_ids.squeeze(1).cuda()
|
|
# p_mask = p_mask.squeeze(1).cuda()
|
|
# prompt_logits = self.model(prompt_ids, attention_mask=p_mask, labels=labels)
|
|
|
|
outputs = self.model(prompt_ids, attention_mask=p_mask, labels=labels)
|
|
|
|
loss = outputs.loss
|
|
prompt_logits = outputs.logits
|
|
|
|
if loss >= 2.5:
|
|
logger.warning(f"batch_id:{batch_id}, abnormal loss: {loss}")
|
|
|
|
loss = loss / self.accimulation_steps
|
|
|
|
self.strategy.backward(loss, self.model, self.optimizer)
|
|
|
|
total_loss += loss.item()
|
|
|
|
# gradient accumulation
|
|
if (batch_id + 1) % self.accimulation_steps == 0:
|
|
self.strategy.optimizer_step(self.optimizer)
|
|
self.optimizer.zero_grad()
|
|
self.scheduler.step()
|
|
wandb.log({
|
|
"loss": total_loss / self.accimulation_steps,
|
|
"lr": self.scheduler.get_last_lr()[0],
|
|
"epoch": epoch,
|
|
"batch_id": batch_id
|
|
})
|
|
total_loss = 0
|
|
step_bar.update()
|
|
|
|
# if batch_id % log_interval == 0:
|
|
# logger.info(f'Train Epoch {epoch}/{self.epochs} Batch {batch_id} Rank {dist.get_rank()} loss {loss.item()}')
|
|
# wandb.log({"loss": loss.item()})
|
|
|
|
# process_bar.update()
|
|
|
|
# eval
|
|
if self.eval_dataloader is not None:
|
|
self.model.eval()
|
|
with torch.no_grad():
|
|
loss_sum = 0
|
|
num_seen = 0
|
|
for batch in self.eval_dataloader:
|
|
prompt_ids = batch["input_ids"].to(torch.cuda.current_device())
|
|
p_mask = batch["attention_mask"].to(torch.cuda.current_device())
|
|
labels = batch["labels"].to(torch.cuda.current_device())
|
|
# prompt_ids = prompt_ids.squeeze(1).cuda()
|
|
# p_mask = p_mask.squeeze(1).cuda()
|
|
|
|
outputs = self.model(prompt_ids, attention_mask=p_mask, labels=labels)
|
|
loss = outputs.loss
|
|
# prompt_logits = outputs.logits
|
|
|
|
loss_sum += loss.item()
|
|
num_seen += prompt_ids.size(0)
|
|
|
|
loss_mean = loss_sum / num_seen
|
|
if dist.get_rank() == 0:
|
|
logger.info(f'Eval Epoch {epoch}/{self.epochs} loss {loss_mean}')
|
|
|
|
# epoch_bar.update()
|
|
|
|
def save_model(self,
|
|
path: str,
|
|
only_rank0: bool = False,
|
|
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
|
|
self.strategy.save_model(model=self.model, path=path, only_rank0=only_rank0, tokenizer=tokenizer)
|