ColossalAI/chunk_codegen.py

1816 lines
68 KiB
Python

import colossalai
import torch
import copy
from typing import List, Callable, Any, Tuple, Dict, Iterable
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
from torch.fx.graph import (
_Namespace,
PythonCode,
_custom_builtins,
_is_from_torch,
_format_target,
magic_methods,
CodeGen,
_origin_type_map,
inplace_methods,
_CustomBuiltin,
)
from colossalai.fx.profiler import (
calculate_fwd_out,
calculate_fwd_tmp,
parameter_size,
activation_size,
)
CODEGEN_AVAILABLE = True
__all__ = ["ChunkCodeGen"]
def _delete_free_var_from_last_use(user_to_last_uses):
for key, value in user_to_last_uses.items():
for n in value:
if n.op == "placeholder":
user_to_last_uses[key].remove(n)
def _get_node_shape(node):
if hasattr(node.meta["tensor_meta"], "shape"):
return node.meta["tensor_meta"].shape
return None
def _is_non_compute_node(node):
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def _is_non_compute_node_except_placeholder(node):
if (any(i in node.op for i in ["get_attr", "output"]) or any(i in node.name for i in ["getitem", "getattr"])):
return True
return False
class FlowTracer(object):
def __init__(self, gm) -> None:
self.gm = gm
self.node_list = list(gm.graph.nodes)
self.flow_trace = {}
def _add_trace(self, name):
self.flow_trace[name] = []
def _add_node(self, trace_name, node):
self.flow_trace[trace_name].append(
{"node": node, "inside_depend": [], "outside_depend": []}
)
def _add_inside_depend(self, flow_name, node, inside_depend_node):
for i in self.flow_trace[flow_name]:
if i["node"] == node:
i["inside_depend"].append(inside_depend_node)
return
raise RuntimeError("node not found")
def _add_outside_depend(
self, flow_name, node, outside_depend_node, outside_depend_trace
):
for i in self.flow_trace[flow_name]:
if i["node"] == node:
i["outside_depend"].append({outside_depend_trace: outside_depend_node})
return
raise RuntimeError("node not found")
def _init_trace(self):
for i in self.node_list:
if i.op == "placeholder":
self._add_trace(i.name)
self._add_node(i.name, i)
def _is_non_compute_node(self, node):
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def _is_non_compute_node_except_placeholder(self, node):
if any(i in node.op for i in ["get_attr", "output"]) or any(
i in node.name for i in ["getitem", "getattr"]
):
return True
return False
def _find_flow_for_node(self, node):
if type(self.node_list[0]) != type(node):
return None
if self._is_non_compute_node_except_placeholder(node):
return None
for name, trace in self.flow_trace.items():
for i in trace:
if node == i["node"]:
return name
if any(i in node.name for i in ["ones_like"]):
self._add_trace(node.name)
self._add_node(node.name, node)
return node.name
raise RuntimeError("node not found")
def _find_first_valid_flow(self, flow):
for i in flow:
if i is not None:
return i
raise RuntimeError("invalid flow")
def find_node_flow(self, node):
for name, trace in self.flow_trace.items():
for i in trace:
if node == i["node"]:
return name, i
raise RuntimeError("invalid node")
def get_flow_mix(self, node):
if self._is_non_compute_node(node):
return None
_, node_trace = self.find_node_flow(node)
if len(node_trace["outside_depend"]) == 0:
return None
elif len(node_trace["outside_depend"]) > 1:
raise NotImplementedError
vars = list(node_trace["outside_depend"][0].values())[0]
return vars
def get_same_flow_node(self, node_list, node):
name, _ = self.find_node_flow(node)
result = []
for i in self.flow_trace[name]:
if i["node"] in node_list:
result.append(i["node"])
return result
def trace_flow(self):
# init trace
self._init_trace()
for node in self.node_list:
# skip if non compute node
if all(
type(arg) != type(node)
or self._is_non_compute_node_except_placeholder(arg)
for arg in node.args
) or self._is_non_compute_node(node):
continue
node_input_flows = [self._find_flow_for_node(arg) for arg in node.args]
node_domin_flow = self._find_first_valid_flow(node_input_flows)
self._add_node(node_domin_flow, node)
for node_input_flow, arg in zip(node_input_flows, node.args):
if node_input_flow is None:
continue
elif node_input_flow == node_domin_flow:
self._add_inside_depend(node_domin_flow, node, arg)
else:
self._add_outside_depend(
node_domin_flow, node, arg, node_input_flow
)
return self.flow_trace
def _detect_flow(self, start_idx, start_dim, end_idx, end_dim):
inputs, outputs = _find_chunk_input_and_output_nodes(
self.node_list[start_idx : end_idx + 1]
)
chunk_info = {
"region": (start_idx, end_idx),
"inputs": inputs,
"inputs_dim": start_dim,
"outputs": outputs,
"outputs_dim": end_dim,
"args": {},
}
flow_flag = False
for idx in range(start_idx, end_idx + 1):
node = self.node_list[idx]
mix_flow_var = self.get_flow_mix(node)
if mix_flow_var is None:
continue
# if there is a flow mix, op must be in [mul, add, div, matmul]
# element-wise op requires dim to be equal in every dim
if any(n in node.name for n in ["mul", "add"]):
for i in node.args:
if type(i) == type(mix_flow_var) and i != mix_flow_var:
main_flow_var = i
# if mix flow is a broadcast in chunk dim,
# TODO need to move that flow out of the chunk
if mix_flow_var.meta["tensor_meta"].shape[dim_idx] == 1:
flow_flag = True
for i in self.get_same_flow_node(
chunk_info["inputs"], mix_flow_var
):
chunk_info["inputs"].remove(i)
# else, we need to chunk mix var as well
else:
# TODO chunk another value
flow_flag = False
break
else:
raise NotImplementedError("%s not implemented" % node.name)
return flow_flag, chunk_info
class IndexTracer(object):
def __init__(self, gm) -> None:
self.gm = gm
self.nodes_list = list(gm.graph.nodes)
self.idx_trace_list = self._init_idx_trace_list()
self.idx_trace_equal = []
self.idx_view_list = []
self.idx_count = -1
def _init_idx_trace_list(self):
idx_trace_list = []
for n in self.nodes_list:
if _get_node_shape(n) != None:
cur_trace = {
"idx": [None for _ in range(len(_get_node_shape(n)))],
"compute": [[] for _ in range(len(_get_node_shape(n)))],
"source": [{} for _ in range(len(_get_node_shape(n)))],
}
else:
cur_trace = {"idx": [], "compute": [], "source": []}
idx_trace_list.append(cur_trace)
return idx_trace_list
def _add_index(self):
"""
Update the count and return it. To record the idx number.
Returns:
idx_count: int
"""
self.idx_count += 1
return self.idx_count
def _del_dim(self, idx, dim_idx):
self.idx_trace_list[idx]["idx"].pop(dim_idx)
self.idx_trace_list[idx]["compute"].pop(dim_idx)
self.idx_trace_list[idx]["source"].pop(dim_idx)
def _add_dim(self, idx, dim_idx):
self.idx_trace_list[idx]["idx"].insert(dim_idx, self._add_index())
self.idx_trace_list[idx]["compute"].insert(dim_idx, [])
self.idx_trace_list[idx]["source"].insert(dim_idx, {})
def _transform_index(self, node, node_dim):
node_idx = self._find_idx_trace_from_node(node)
dims = list(range(len(node_idx)))
return dims[node_dim]
def _inherit_index(self, node_from, node_from_dim, node_to, node_to_dim):
node_from_dim = self._transform_index(node_from, node_from_dim)
node_to_dim = self._transform_index(node_to, node_to_dim)
node_from_trace = self._find_trace_from_node(node_from)
node_to_trace = self._find_trace_from_node(node_to)
node_to_trace["idx"][node_to_dim] = node_from_trace["idx"][node_from_dim]
node_to_trace["compute"][node_to_dim] = copy.deepcopy(
node_from_trace["compute"][node_from_dim]
)
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
def _inherit_all_computation(self, node_from, node_to):
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
assert len(node_from_compute) == len(node_to_compute)
for i in range(len(node_from_compute)):
self._add_source(node_from, i, node_to, i)
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
node_from_dim = self._transform_index(node_from, node_from_dim)
node_from_trace = self._find_trace_from_node(node_from)
node_to_dim = self._transform_index(node_to, node_to_dim)
node_to_trace = self._find_trace_from_node(node_to)
node_from_idx = _find_idx_by_name(node_from.name, self.nodes_list)
if init:
node_to_trace["source"][node_to_dim] = {}
node_to_trace["source"][node_to_dim][node_from_idx] = node_from_dim
node_to_trace["source"][node_to_dim].update(
node_from_trace["source"][node_from_dim]
)
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
if exclude == None:
exclude = []
else:
exclude = [self._transform_index(node_to, i) for i in exclude]
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
# assert len(node_from_compute) == len(node_to_compute)
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
if self._transform_index(node_to, i) in exclude:
continue
self._add_source(node_from, i, node_to, i)
for j in node_from_compute[i]:
if j not in node_to_compute[i]:
node_to_compute[i].append(j)
def _mark_idx_equal(self, node1, dim1, node2, dim2):
"""
Mark 2 index to be equal.
Args:
idx1 (int): index count.
idx2 (int): index count.
"""
# node1_idx = _find_idx_by_name(node1.name, self.nodes_list)
# node2_idx = _find_idx_by_name(node2.name, self.nodes_list)
# if node1_idx > node2_idx:
# self._add_source(node2, dim2, node1, dim1)
# else:
# self._add_source(node1, dim1, node2, dim2)
def _mark_computation(self, node, idx, dim):
"""
Mark some dims of node as computed.
Args:
node (node)
idx (int): node index
dim (list or int): dims to be marked as computed
"""
if isinstance(dim, int):
dim = [dim]
dims = list(range(len(_get_node_shape(node))))
for d in dim:
cur_dim = dims[d]
if idx not in self.idx_trace_list[idx]["compute"][cur_dim]:
self.idx_trace_list[idx]["compute"][cur_dim].append(idx)
def _find_trace_from_node(self, node):
"""
Find node idx and compute trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
compute (list): computed idx of the node.
"""
node_idx = _find_idx_by_name(node.name, self.nodes_list)
node_dict = self.idx_trace_list[node_idx]
return node_dict
def _find_idx_trace_from_node(self, node):
"""
Find node idx trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
"""
node_idx = _find_idx_by_name(node.name, self.nodes_list)
return self.idx_trace_list[node_idx]["idx"]
def _find_compute_trace_from_node(self, node):
"""
Find node compute trace by the node.
Args:
node (node)
Returns:
compute (list): computed idx of the node.
"""
node_idx = _find_idx_by_name(node.name, self.nodes_list)
return self.idx_trace_list[node_idx]["compute"]
def _assign_index_as_input(self, node, node_idx, input_node=None):
"""
Assign node's trace as its input node.
Args:
node (node)
node_idx (int)
"""
if input_node == None:
input_node = node.args[0]
input_node_idx = _find_idx_by_name(input_node.name, self.nodes_list)
input_node_idx_trace = self.idx_trace_list[input_node_idx]["idx"]
new_idx_trace = copy.deepcopy(input_node_idx_trace)
self.idx_trace_list[node_idx]["idx"] = new_idx_trace
self._inherit_all_computation(input_node, node)
def _assign_all_index(self, node, node_idx):
"""
Add new index for all node's dims.
Args:
node (node)
node_idx (int)
"""
shape = node.meta["tensor_meta"].shape
new_trace = []
for _ in shape:
new_trace.append(self._add_index())
self.idx_trace_list[node_idx]["idx"] = new_trace
def _assign_transpose_index(self, node, node_idx):
"""
Assign index for transpose op.
1. swap input's dim according to transpose args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
input_node = node.args[0]
tranpose_dim = node.args[1:]
self._assign_index_as_input(node, node_idx, input_node)
self._inherit_index(input_node, tranpose_dim[1], node, tranpose_dim[0])
self._inherit_index(input_node, tranpose_dim[0], node, tranpose_dim[1])
def _assign_permute_index(self, node, node_idx):
"""
Assign index for permute op.
1. swap input's dim according to permute args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
permute_dim = node.args[1:]
input_node = node.args[0]
self._assign_index_as_input(node, node_idx, input_node)
for idx, d in enumerate(permute_dim):
self._inherit_index(input_node, d, node, idx)
def _assign_linear_index(self, node, node_idx):
"""
Assign index for linear op.
1. copy trace from input node and change last index accroding to weight
2. mark equal for input node last index, weight first dim and bias dim.
3. inherit input's computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
if len(node.args) == 2:
input_node, weight = node.args
bias = None
else:
input_node, weight, bias = node.args
self._assign_index_as_input(node, node_idx)
self._inherit_index(weight, 1, node, -1)
self._mark_computation(node, node_idx, [-1])
self._mark_idx_equal(input_node, -1, weight, 0)
if bias:
self._mark_idx_equal(input_node, -1, bias, 0)
def _assign_matmul_index(self, node, node_idx):
"""
Assign index for matmul op.
1. copy trace from matmul_left and change last index accroding to matmul_right. (assert they have same length)
2. mark equal for input matmul_left -1 index and matmul_right -2 dim.
3. inherit matmul_left and matmul_right computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
matmul_left, matmul_right = node.args
assert len(_get_node_shape(matmul_left)) == len(_get_node_shape(matmul_right))
self._assign_index_as_input(node, node_idx, matmul_left)
self._inherit_index(matmul_right, -1, node, -1)
self._mark_computation_from_node(matmul_right, node, [-1, -2])
self._mark_computation(node, node_idx, [-1])
self._mark_idx_equal(matmul_left, -1, matmul_right, -2)
def _assign_layernorm_index(self, node, idx):
"""
Assign index for layernorm op.
1. assign index as input node
2. inherit computation and mark last 2 dims as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
self._mark_computation(node, idx, [-1, -2])
def _assign_elementwise_index(self, node, idx):
"""
Assign index for element-wise op (eg. relu sigmoid add mul).
1. assign index as input node
2. inherit computation from all input nodes.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
nodes_in = []
for node_in in node.args:
if type(node_in) == type(node):
nodes_in.append(node_in)
self._mark_computation_from_node(node_in, node)
assert len(nodes_in) <= 2
if len(nodes_in) == 2:
node_in0_shape = _get_node_shape(nodes_in[0])
node_in1_shape = _get_node_shape(nodes_in[1])
for i in range(-1, -min(len(node_in0_shape), len(node_in1_shape)) - 1, -1):
if node_in0_shape[i] == node_in1_shape[i]:
self._mark_idx_equal(nodes_in[0], i, nodes_in[1], i)
def _assgin_no_change_index(self, node, idx):
self._assign_index_as_input(node, idx)
for node_in in node.args:
if type(node_in) == type(node):
self._mark_computation_from_node(node_in, node)
def _assign_einsum_index(self, node, idx):
"""
Assign index for einsum op.
Args:
node (node)
node_idx (int)
"""
patterns = node.args[0]
input_nodes = node.args[1:]
patterns = patterns.replace(" ", "")
left, right = patterns.split("->")
left = left.split(",")
all_index = []
for i in left:
for c in i:
all_index.append(c)
all_index = set(all_index)
free_index = set([i for i in right])
sum_index = all_index - free_index
for right_idx, right_indice in enumerate(right):
for left_idx, left_str in enumerate(left):
if right_indice in left_str:
source_idx = left_str.index(right_indice)
self._inherit_index(
input_nodes[left_idx], source_idx, node, right_idx
)
# for i in sum_index:
# for left_idx, left_str in enumerate(left):
# if i in left_str:
# self._mark_computation(node, idx, left_str.index(i))
# break
def _assign_softmax_index(self, node, idx):
"""
Assign index for softmax op.
1. assign index as input node
2. inherit computation and mark softmax dim as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
self._mark_computation(node, idx, [node.kwargs["dim"]])
def _assign_unsqueeze_index(self, node, node_idx):
"""
Assign index for unsqueeze op.
1. assign new index for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._del_dim(node_idx, -1)
self._assign_index_as_input(node, node_idx)
self.idx_trace_list[node_idx]["idx"].insert(node.args[1], self._add_index())
self.idx_trace_list[node_idx]["compute"].insert(node.args[1], [])
self.idx_trace_list[node_idx]["source"].insert(node.args[1], [])
def _assign_dropout_index(self, node, node_idx):
"""
Assign index for unsqueeze op.
1. assign new index for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, node_idx)
def _assign_ones_like_index(self, node, node_idx):
"""
Assign index for oneslike op.
1. assign new index for all dim
Args:
node (node)
node_idx (int)
"""
self._assign_all_index(node, node_idx)
def _assign_view_reshape_index(self, node, node_idx):
"""
Assign index for view and reshape op.
1. get origin shape and target shape by meta info.
2. compute the real value of -1 in target shape.
3. determine changed dim, and assgin index for generated dim.
4. log changed dim and generated dim for restore
5. inherit computation.
6. TODO: look into view list to see whether the view is associated with other,
if so assgin equal dim according to previous view.
Args:
node (node)
node_idx (int)
"""
# get data, turn into number
origin_node = node.args[0]
origin_shape = origin_node.meta["tensor_meta"].shape
target_shape = []
for i in range(1, len(node.args)):
if isinstance(node.args[i], int):
target_shape.append(node.args[i])
else:
target_shape.append(node.args[i].meta["fwd_out"][0])
# compute the value of -1
if -1 in target_shape:
origin_product = 1
for i in origin_shape:
origin_product *= i
target_product = -1
for i in target_shape:
target_product *= i
shape_idx = target_shape.index(-1)
target_shape[shape_idx] = origin_product // target_product
# determine changed dim
len_diff = len(origin_shape) - len(target_shape)
if len_diff == 1:
# dim merge
dim_equal = [i == j for i, j in zip(origin_shape[:-1], target_shape)]
dim_to = [dim_equal.index(False)]
dim_from = [dim_equal.index(False), dim_equal.index(False) + 1]
self._add_dim(node_idx, -1)
elif len_diff == -1:
# dim expand
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
dim_from = [dim_equal.index(False)]
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
self._del_dim(node_idx, -1)
else:
raise NotImplementedError(
"shape"
+ str(origin_shape)
+ "and"
+ str(target_shape)
+ "view not implemented"
)
# get new index
origin_trace = self._find_idx_trace_from_node(origin_node)
self._assign_index_as_input(node, node_idx, origin_node)
dim_from.reverse()
for i in dim_from:
self._del_dim(node_idx, i)
for i in dim_to:
self._add_dim(node_idx, i)
# inherit computation
compute_log = self._find_compute_trace_from_node(origin_node)
for i in dim_from:
if origin_trace[i] in compute_log:
for j in dim_to:
self._mark_computation(node, node_idx, [j])
break
# log view, not used now
view_dict = {
"idx_from": [origin_trace[i] for i in dim_from],
"dim_from": dim_from,
"idx_to": [self.idx_trace_list[node_idx]["idx"][i] for i in dim_to],
"dim_to": dim_to,
}
self.idx_view_list.append(view_dict)
def _merge_equal_idx(self):
idx_equal = copy.deepcopy(self.idx_trace_equal)
idx_equal.reverse()
for idx in idx_equal:
merge_to = min(idx)
merge_from = max(idx)
for trace in self.idx_trace_list:
if merge_from in trace["idx"]:
trace["idx"] = [
merge_to if i == merge_from else i for i in trace["idx"]
]
def trace_index(self):
for idx, node in enumerate(self.nodes_list):
if node.op == "placeholder":
self._assign_all_index(node, idx)
elif node.op == "call_method":
if "transpose" in node.name:
self._assign_transpose_index(node, idx)
elif "permute" in node.name:
self._assign_permute_index(node, idx)
elif "view" in node.name or "reshape" in node.name:
self._assign_view_reshape_index(node, idx)
elif "unsqueeze" in node.name:
self._assign_unsqueeze_index(node, idx)
elif any(i in node.name for i in ["to", "contiguous"]):
self._assgin_no_change_index(node, idx)
else:
raise NotImplementedError(node.name, "method not implemented yet!")
elif node.op == "call_function":
if "linear" in node.name:
self._assign_linear_index(node, idx)
elif "matmul" in node.name:
self._assign_matmul_index(node, idx)
elif "softmax" in node.name:
self._assign_softmax_index(node, idx)
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu"]):
self._assign_elementwise_index(node, idx)
elif "ones_like" in node.name:
self._assign_ones_like_index(node, idx)
elif "dropout" in node.name:
self._assign_dropout_index(node, idx)
elif "einsum" in node.name:
self._assign_einsum_index(node, idx)
elif "getattr" in node.name:
continue # get attr like shape
elif "getitem" in node.name:
continue # get item in list
else:
raise NotImplementedError(
node.name, "function not implemented yet!"
)
elif node.op == "call_module":
if any(n in node.name for n in ["layernorm", "norm"]):
self._assign_layernorm_index(node, idx)
else:
raise NotImplementedError(node.name, "module not implemented yet!")
elif node.op == "get_attr":
self._assign_all_index(node, idx) # get param
elif node.op == "output":
continue
else:
raise NotImplementedError(node.op, "op not implemented yet!")
# self._merge_equal_idx()
def check_index_source(self, start_dim, start_node, start_idx, end_dim, end_node):
"""
Check 2 given index: one index should be source of the other
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
start_node_idx = _find_idx_by_name(start_node.name, self.nodes_list)
end_node_trace = self._find_trace_from_node(end_node)
end_node_trace_source = end_node_trace["source"][end_dim]
sorted_source = sorted(
end_node_trace_source.items(), key=lambda d: d[0], reverse=True
)
for node_idx, node_dim in sorted_source:
if node_idx == start_node_idx and node_dim == start_dim:
return True
# it means we meet a node outside the loop, and the node is not input node
if node_idx < start_idx:
return False
return False
def check_index_compute(self, start_idx, end_dim, end_node, end_idx):
"""
Check 2 given index: check they haven't been computed in the source trace.
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
end_node_trace = self._find_trace_from_node(end_node)
end_node_compute = end_node_trace["compute"][end_dim]
if any(start_idx <= i <= end_idx for i in end_node_compute):
return False
return True
# end_node_trace_source = end_node_trace['source'][end_dim]
# for node_idx, node_dim in end_node_trace_source.items():
# if node_idx < start_node_idx or node_idx > end_node_idx:
# continue
# compute_list = self.idx_trace_list[node_idx]['compute'][node_dim]
# if any(start_node_idx <= i <= end_node_idx for i in compute_list):
# return False
# return True
class MemoryEstimator(object):
def __init__(self) -> None:
pass
def _get_meta_node_size(self, x):
x = x.meta["tensor_meta"]
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
return x
def _get_output_node(self, n):
fwd_out = {
x.uuid: x
for x in n.meta["fwd_out"]
if isinstance(x, torch.Tensor) and hasattr(x, "uuid")
}
out_size = activation_size(fwd_out)
out_node = [n.name] if out_size > 0 else []
return out_size, out_node
def _get_output_node_size(self, n):
return self._get_output_node(n)[0]
def _add_active_node(self, n, active_list):
new_active = self._get_output_node(n)[1]
for i in new_active:
if i not in active_list:
active_list.append(i)
def _get_delete_node(self, user, user_to_last_uses):
delete_size = 0
delete_node = []
if user.op not in ("placeholder", "output"):
nodes_to_delete = user_to_last_uses.get(user, [])
if len(nodes_to_delete):
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
for i in range(len(out_node)):
if out_node[i][0] > 0:
delete_node.append(out_node[i][1][0])
elif nodes_to_delete[i].op == "placeholder":
delete_node.append(nodes_to_delete[i].name)
return delete_size, delete_node
def _get_delete_node_size(self, user, user_to_last_uses):
return self._get_delete_node(user, user_to_last_uses)[0]
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
for i in delete_node:
active_list.remove(i)
def _get_last_usr(self, nodes):
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
return user_to_last_uses
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
mem = 0
not_contiguous_ops = ["transpose", "permute"]
if node.op == "call_function" and any(
n in node.name for n in ["matmul", "reshape"]
):
for n in node.args:
if n in not_contiguous_list:
# matmul won't change origin tensor, but create a tmp copy
mem += self._get_output_node_size(n)
elif node.op == "call_module":
for n in node.args:
if n in not_contiguous_list:
# module will just make origin tensor to contiguous
if delete:
not_contiguous_list.remove(n)
elif node.op == "call_method" and any(
i in node.name for i in not_contiguous_ops
):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
elif any(i in node.args for i in not_contiguous_list):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
return mem
def _get_chunk_ratio(self, node, chunk_dim, chunk_size):
shape = node.meta["tensor_meta"].shape
chunk_ratio = float(chunk_size) / shape[chunk_dim]
return chunk_ratio
def _get_chunk_delete_node_size(
self, user, user_to_last_uses, chunk_ratio, node_list, start_node, end_node
):
if user.op in ("placeholder", "output"):
return 0
nodes_to_delete = user_to_last_uses.get(user, [])
delete_size = 0
for n in nodes_to_delete:
node_idx = _find_idx_by_name(n.name, node_list)
if start_node <= node_idx < end_node:
delete_size += self._get_output_node_size(n) * chunk_ratio
return delete_size
def _print_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def _print_compute_op_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
if n.op in ["placeholder", "get_attr", "output"]:
continue
if any(i in n.name for i in ["getitem", "getattr"]):
continue
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def estimate_chunk_inference_mem(
self,
gm: torch.fx.GraphModule,
start_nodes=None,
end_nodes=None,
chunk_dims=None,
chunk_sizes=None,
):
act_memory = 0.0
act_memory_peak_log = []
act_memory_after_node_log = []
active_node_list = []
active_node_list_log = []
not_contiguous_list = []
node_list = list(gm.graph.nodes)
user_to_last_uses = self._get_last_usr(node_list)
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
_delete_free_var_from_last_use(user_to_last_uses_no_free_var)
use_chunk = all(
i is not None for i in [start_nodes, end_nodes, chunk_dims, chunk_sizes]
)
chunk_within = False
chunk_region_idx = 0
chunk_ratio = 1 # use it to estimate chunk mem
for idx, node in enumerate(node_list):
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
if use_chunk and idx in start_nodes:
chunk_within = True
chunk_ratio = self._get_chunk_ratio(
node, chunk_dims[chunk_region_idx], chunk_sizes[chunk_region_idx]
)
act_memory += self._get_output_node_size(
node_list[end_nodes[chunk_region_idx]]
) / (1024**2)
# if node is placeholder, just add the size of the node
if node.op == "placeholder":
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
act_memory_peak_log.append(act_memory)
active_node_list.append(node.name)
# skip output
elif node.op == "output":
continue
# node is an operation, calculate tmp, output node and delete node memory
else:
# forward memory
act_memory += (
self._get_contiguous_memory(node, not_contiguous_list)
* chunk_ratio
/ (1024**2)
)
act_memory += (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
# record max act memory
act_memory_peak_log.append(act_memory)
# delete useless memory
act_memory -= (
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
* chunk_ratio
/ (1024**2)
)
if chunk_within:
act_memory -= self._get_chunk_delete_node_size(
node,
user_to_last_uses_no_free_var,
chunk_ratio,
node_list,
start_nodes[chunk_region_idx],
end_nodes[chunk_region_idx],
) / (1024**2)
else:
act_memory -= self._get_delete_node_size(
node, user_to_last_uses_no_free_var
) / (1024**2)
# log active node
self._add_active_node(node, active_node_list)
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
# if node in chunk end nodes, restore chunk settings
if use_chunk and idx in end_nodes:
act_memory -= (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
chunk_within = False
chunk_ratio = 1
chunk_region_idx += 1
act_memory_after_node_log.append(act_memory)
active_node_list_log.append(copy.deepcopy(active_node_list))
print("with chunk" if use_chunk else "without chunk")
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
self._print_compute_op_mem_log(act_memory_after_node_log, node_list, "after")
# param_memory = parameter_size(gm)
# all_memory = act_memory + param_memory
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log
class ChunkRegionSearch(object):
def __init__(self, gm) -> None:
self.gm = gm
self.node_list = list(gm.graph.nodes)
self.memory_estimator = MemoryEstimator()
self.index_tracer = IndexTracer(gm)
self.index_tracer.trace_index()
self.flow_tracer = FlowTracer(gm)
self.flow_tracer.trace_flow()
def _find_peak_node(self, mem_peak):
max_value = max(mem_peak)
max_idx = mem_peak.index(max_value)
return max_idx
def _get_free_var(self):
free_var_idx = []
for idx, n in enumerate(self.node_list):
if n.op == "placeholder":
free_var_idx.append(idx)
return free_var_idx
def _get_min_free_var(self, active_node_list, free_vars):
min_len = 999
for idx, n in enumerate(active_node_list):
if idx in free_vars:
continue
if len(n) < min_len:
min_len = len(n)
return min_len
def _search_max_chunk_region(self, active_node, peak_node):
free_vars = self._get_free_var()
min_var = self._get_min_free_var(active_node, free_vars)
# from peak_node to free_var
chunk_region_start = None
for i in range(peak_node, -1, -1):
if len(active_node[i]) == min_var:
chunk_region_start = i + 1
break
if i in free_vars or i == 0:
raise RuntimeError()
# from peak_node to len-2
chunk_region_end = None
for i in range(peak_node, len(active_node)):
if len(active_node[i]) == min_var:
chunk_region_end = i
break
if i in free_vars or i == 0:
raise RuntimeError()
return chunk_region_start, chunk_region_end
def _is_not_compute(self, trace, chunk_range, dim_idx):
if trace["idx"][dim_idx] not in trace["compute"]:
return True
if trace["idx"][dim_idx] in trace["compute"] and all(
i < chunk_range[0] or i > chunk_range[1]
for i in trace["compute"][trace["idx"][dim_idx]]
):
return True
return False
def _check_duplicate_map(self, chunk_infos):
dim_map = [(i["inputs_dim"], i["outputs_dim"]) for i in chunk_infos]
remove_list = []
for idx1, (input_dim1, output_dim1) in enumerate(dim_map):
for idx2, (input_dim2, output_dim2) in enumerate(dim_map):
if idx1 == idx2:
continue
# it means an index create 2 copy of itself
# eg. a = torch.matmul(x, x.transpose(-1, -2))
# TODO currently remove it, deal with this in future
if input_dim1 == input_dim2 and output_dim1 != output_dim2:
remove_list.append(chunk_infos[idx1])
remove_list.append(chunk_infos[idx2])
for i in remove_list:
if i in chunk_infos:
chunk_infos.remove(i)
return chunk_infos
def _find_free_dim(self, input_trace, output_trace, start_idx, end_idx):
start_traces = input_trace[start_idx]
end_trace = output_trace[end_idx]
end_node = self.node_list[end_idx]
chunk_infos = []
for end_dim, end_trace_idx in enumerate(end_trace["idx"]):
if len(start_traces) > 1:
# TODO implement multi input chunk
continue
for start_node, start_trace in start_traces.items():
for start_dim, start_trace_idx in enumerate(start_trace["idx"]):
# must be same trace idx
if start_trace_idx != end_trace_idx:
continue
# dim size cannot be 1
if (
_get_node_shape(end_node)[end_dim] == 1
or _get_node_shape(start_node)[start_dim] == 1
):
continue
# check index source align
if not self.index_tracer.check_index_source(
start_dim, start_node, start_idx, end_dim, end_node
):
continue
# check index copmute
if not self.index_tracer.check_index_compute(
start_idx, end_dim, end_node, end_idx
):
continue
# detect flow meet
flow_flag, chunk_info = self.flow_tracer._detect_flow(
start_idx, start_dim, end_idx, end_dim
)
if flow_flag:
continue
chunk_infos.append(chunk_info)
chunk_infos = self._check_duplicate_map(chunk_infos)
return chunk_infos
def _search_possible_chunk_regions(self, max_chunk_region, peak_node):
possible_chunk_region = []
output_trace = copy.deepcopy(self.index_tracer.idx_trace_list)
input_trace = [] # trace of a node's input nodes
for _, n in enumerate(self.node_list):
cur_trace = {}
for arg in n.args:
if type(arg) == type(n) and not _is_non_compute_node_except_placeholder(
arg
):
cur_trace[arg] = self.index_tracer._find_trace_from_node(arg)
input_trace.append(cur_trace)
for start_idx in range(max_chunk_region[0], peak_node + 1):
for end_idx in range(peak_node, max_chunk_region[1] + 1):
# skip non compute nodes
if _is_non_compute_node(
self.node_list[start_idx]
) or _is_non_compute_node(self.node_list[end_idx]):
continue
# select free dim
chunk_info = self._find_free_dim(
input_trace, output_trace, start_idx, end_idx
)
if len(chunk_info) > 0:
possible_chunk_region.extend(chunk_info)
return possible_chunk_region
def _search_best_chunk_region(self, possible_chunk_regions):
max_region_range = 0
best_regions = None
for i in possible_chunk_regions:
if i["region"][1] - i["region"][0] > max_region_range:
best_regions = i
max_region_range = i["region"][1] - i["region"][0]
return best_regions
def _step_search(self, mem_peak, active_node):
peak_node = self._find_peak_node(mem_peak)
max_chunk_region = self._search_max_chunk_region(active_node, peak_node)
possible_chunk_regions = self._search_possible_chunk_regions(
max_chunk_region, peak_node
)
best_chunk_region = self._search_best_chunk_region(possible_chunk_regions)
return best_chunk_region
def _stop_search(self, init_mem_peak, mem_peak):
sorted_init_mem_peak = sorted(init_mem_peak)
if max(mem_peak) < sorted_init_mem_peak[int(len(sorted_init_mem_peak) * 0.5)]:
return True
return False
def search_region(self):
chunk_regions = []
(
init_mem_peak,
_,
active_node,
) = self.memory_estimator.estimate_chunk_inference_mem(self.gm)
mem_peak = init_mem_peak
while True:
chunk_region = self._step_search(mem_peak, active_node)
if chunk_region is None:
break
chunk_regions.append(chunk_region)
(
mem_peak,
_,
active_node,
) = self.memory_estimator.estimate_chunk_inference_mem(
self.gm,
[i["region"][0] for i in chunk_regions],
[i["region"][1] for i in chunk_regions],
[i["inputs_dim"] for i in chunk_regions],
[1] * len(chunk_regions),
)
if self._stop_search(init_mem_peak, mem_peak):
break
return chunk_regions
def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape):
new_shape = "["
for idx, i in enumerate(shape):
if idx == chunk_dim:
new_shape += "%s:%s + chunk_size" % (chunk_idx_name, chunk_idx_name)
else:
new_shape += ":"
new_shape += ", "
new_shape = new_shape[:-2] + "]"
return new_shape
def _get_first_non_single_dim(shape):
for idx, i in enumerate(shape):
if i == 1:
continue
else:
return idx
raise RuntimeError("can not get first non single dim for shape", shape)
def _gen_loop_start(chunk_input_meta, chunk_output, chunk_dim, chunk_size=2):
if len(chunk_input_meta) == 1:
node = chunk_input_meta[0]
node_shape = node.meta["tensor_meta"].shape
free_shape = [
node_shape[i] if i in chunk_dim else 1 for i in range(len(node_shape))
]
chunk_dim = _get_first_non_single_dim(free_shape)
chunk_slice = _gen_chunk_slice_dim(chunk_dim, "gen_chunk_idx", node_shape)
out_shape = str(list(chunk_output.meta["tensor_meta"].shape))
context = (
"chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor gen_chunk_idx in range"
% (out_shape, node.name, node.name, chunk_size)
)
context += "(0, %s.shape[%d], chunk_size):\n" % (node.name, chunk_dim)
context += " chunk_tensor = %s%s\n" % (node.name, chunk_slice)
else:
raise NotImplementedError(
"input with size %d not implemented" % len(chunk_input_meta)
)
return context
def _gen_loop_end(chunk_outputs, chunk_inputs, node_list, chunk_dim):
chunk_inputs_name = chunk_inputs[0].name
chunk_outputs_name = chunk_outputs.name
chunk_outputs_idx = _find_idx_by_name(chunk_outputs_name, node_list)
chunk_output_shape = chunk_outputs.meta["tensor_meta"].shape
free_shape = [
chunk_output_shape[i] if i in chunk_dim else 1
for i in range(len(chunk_output_shape))
]
chunk_dim = _get_first_non_single_dim(free_shape)
chunk_slice = _gen_chunk_slice_dim(chunk_dim, "gen_chunk_idx", chunk_output_shape)
context = " chunk_result%s = %s\n" % (chunk_slice, chunk_outputs_name)
context += (
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
)
# determine if its the last use for chunk input
users_name = list(chunk_inputs[0].users.keys())
if all(
[
_find_idx_by_name(user.name, node_list) <= chunk_outputs_idx
for user in users_name
]
):
context += "; %s = None" % chunk_inputs_name
context += "\n"
return context
def _find_input_and_output_nodes(nodes: List[Node]):
"""
Find the input and output node names which are not found in the given list of nodes.
"""
input_nodes = []
output_nodes = []
# if a node has an input node which is not in the node list
# we treat that input node as the input of the checkpoint function
for node in nodes:
for input_node in node._input_nodes.keys():
node_repr = repr(input_node)
if input_node not in nodes and input_node not in input_nodes:
input_nodes.append(input_node)
# if a node has a user node which is not in the node list
# we treat that user node as the node receiving the current node output
for node in nodes:
for output_node in node.users.keys():
node_repr = repr(node)
if output_node not in nodes and output_node not in output_nodes:
output_nodes.append(output_node)
return input_nodes, output_nodes
def _find_chunk_input_and_output_nodes(nodes: List[Node]):
"""
Find non-compute input and output node names.
input nodes are nodes used in the list
output nodes are nodes will use nodes in the list
"""
input_nodes = []
output_nodes = []
# if a node has an input node which is not in the node list
# we treat that input node as the input of the checkpoint function
for node in nodes:
for input_node in node._input_nodes.keys():
if (
input_node not in nodes
and input_node not in input_nodes
and not _is_non_compute_node_except_placeholder(input_node)
):
input_nodes.append(input_node)
# if a node has a user node which is not in the node list
# we treat that user node as the node receiving the current node output
# TODO it is unsafe to remove non compute node here
for node in nodes:
for output_node in node.users.keys():
if (
output_node not in nodes
and node not in output_nodes
and not _is_non_compute_node_except_placeholder(input_node)
):
output_nodes.append(node)
return input_nodes, output_nodes
def _find_idx_by_name(name, nodes_list):
for idx, node in enumerate(nodes_list):
if node.name == name:
return idx
raise RuntimeError("name %s not found in node list" % name)
def _replace_name(context, name_from, name_to):
patterns = [(" ", " "), (" ", "."), (" ", ","), ("(", ")"), ("(", ",")]
for p in patterns:
source = p[0] + name_from + p[1]
target = p[0] + name_to + p[1]
if source in context:
context = context.replace(source, target)
return context
def emit_code_with_chunk(
body,
ckpt_func,
nodes,
emit_node_func,
delete_unused_value_func,
meta_nodes,
meta_graph,
):
"""Emit code with nested activation checkpoint
When we detect some of the node.activation_checkpoint is a List, we will use
this function to emit the activation checkpoint codes.
Args:
body: forward code
ckpt_func: checkpoint functions code
nodes: graph.nodes
emit_node_func: function to emit node
delete_unused_value_func: function to remove the unused value
"""
# find the offload regions
chunk_region_search = ChunkRegionSearch(meta_graph)
chunk_search = chunk_region_search.search_region()
chunk_regions = [i["region"] for i in chunk_search]
chunk_dims = [i["dim"] for i in chunk_search]
chunk_infos = [i["chunk_info"] for i in chunk_search]
chunk_starts = [item[0] for item in chunk_regions]
chunk_ends = [item[1] for item in chunk_regions]
chunk_inputs = [[j["inputs"][0] for j in i] for i in chunk_infos]
chunk_outputs = [[j["outputs"][0] for j in i] for i in chunk_infos]
within_chunk_region = False
node_list = list(nodes)
# find the input and output var names for each offload region
# for idx, (start, end) in enumerate(chunk_regions):
# offload_node_list = node_list[start:end + 1]
# inputs, outputs = _find_input_and_output_nodes(offload_node_list)
# chunk_inputs.append(inputs)
# chunk_outputs.append(outputs)
chunk_inputs_idx = [
[_find_idx_by_name(j.name, node_list) for j in i] for i in chunk_inputs
]
chunk_outputs_idx = [
[_find_idx_by_name(j.name, node_list) for j in i] for i in chunk_outputs
]
chunk_inputs_names = []
for i in chunk_inputs:
for j in i:
chunk_inputs_names.append(j.name)
# this flag is to prevent repeated insert of save tensors
# hooks definition in ckpt_func
node_idx = 0
region_idx = 0
while node_idx < len(node_list):
node = node_list[node_idx]
if node_idx in chunk_starts:
within_chunk_region = True
region_idx = chunk_starts.index(node_idx)
# add for loop
chunk_input_meta = [meta_nodes[i] for i in chunk_inputs_idx[region_idx]]
body.append(
_gen_loop_start(
chunk_input_meta,
node_list[chunk_ends[region_idx]],
chunk_dims[region_idx],
)
)
if within_chunk_region:
emit_node_func(node, body)
# replace input var with chunk var
body[-1] = _replace_name(
body[-1], chunk_inputs[region_idx][0].name, "chunk_tensor"
)
body[-1] = " " + body[-1]
delete_unused_value_func(node, body, chunk_inputs_names)
else:
emit_node_func(node, body)
if node_idx not in chunk_inputs:
delete_unused_value_func(node, body, chunk_inputs_names)
if node_idx in chunk_ends:
body.append(
_gen_loop_end(
node, chunk_inputs[region_idx], node_list, chunk_dims[region_idx]
)
)
within_chunk_region = False
node_idx += 1
if CODEGEN_AVAILABLE:
class ChunkCodeGen(CodeGen):
def __init__(self, meta_graph):
super().__init__()
self.meta_graph = meta_graph
self.meta_node = list(meta_graph.graph.nodes)
def _gen_python_code(
self, nodes, root_module: str, namespace: _Namespace
) -> PythonCode:
free_vars: List[str] = []
body: List[str] = []
globals_: Dict[str, Any] = {}
wrapped_fns: Dict[str, None] = {}
# Wrap string in list to pass by reference
maybe_return_annotation: List[str] = [""]
def add_global(name_hint: str, obj: Any):
"""Add an obj to be tracked as a global.
We call this for names that reference objects external to the
Graph, like functions or types.
Returns: the global name that should be used to reference 'obj' in generated source.
"""
if (
_is_from_torch(obj) and obj != torch.device
): # to support registering torch.device
# HACK: workaround for how torch custom ops are registered. We
# can't import them like normal modules so they must retain their
# fully qualified name.
return _get_qualified_name(obj)
# normalize the name hint to get a proper identifier
global_name = namespace.create_name(name_hint, obj)
if global_name in globals_:
assert globals_[global_name] is obj
return global_name
globals_[global_name] = obj
return global_name
# set _custom_builtins here so that we needn't import colossalai in forward
_custom_builtins["colossalai"] = _CustomBuiltin(
"import colossalai", colossalai
)
# Pre-fill the globals table with registered builtins.
for name, (_, obj) in _custom_builtins.items():
add_global(name, obj)
def type_repr(o: Any):
if o == ():
# Empty tuple is used for empty tuple type annotation Tuple[()]
return "()"
typename = _type_repr(o)
if hasattr(o, "__origin__"):
# This is a generic type, e.g. typing.List[torch.Tensor]
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
origin_typename = add_global(_type_repr(origin_type), origin_type)
if hasattr(o, "__args__"):
# Assign global names for each of the inner type variables.
args = [type_repr(arg) for arg in o.__args__]
if len(args) == 0:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python < 3.9
return origin_typename
return f'{origin_typename}[{",".join(args)}]'
else:
# Bare type, such as `typing.Tuple` with no subscript
# This code-path used in Python 3.9+
return origin_typename
# Common case: this is a regular module name like 'foo.bar.baz'
return add_global(typename, o)
def _format_args(
args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
) -> str:
def _get_repr(arg):
# Handle NamedTuples (if it has `_fields`) via add_global.
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
qualified_name = _get_qualified_name(type(arg))
global_name = add_global(qualified_name, type(arg))
return f"{global_name}{repr(tuple(arg))}"
return repr(arg)
args_s = ", ".join(_get_repr(a) for a in args)
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items())
if args_s and kwargs_s:
return f"{args_s}, {kwargs_s}"
return args_s or kwargs_s
# Run through reverse nodes and record the first instance of a use
# of a given node. This represents the *last* use of the node in the
# execution order of the program, which we will use to free unused
# values
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
_delete_free_var_from_last_use(user_to_last_uses)
# NOTE: we add a variable to distinguish body and ckpt_func
def delete_unused_values(user: Node, body, to_keep=[]):
"""
Delete values after their last use. This ensures that values that are
not used in the remainder of the code are freed and the memory usage
of the code is optimal.
"""
if user.op == "placeholder":
return
if user.op == "output":
body.append("\n")
return
nodes_to_delete = user_to_last_uses.get(user, [])
nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep]
if len(nodes_to_delete):
to_delete_str = " = ".join(
[repr(n) for n in nodes_to_delete] + ["None"]
)
body.append(f"; {to_delete_str}\n")
else:
body.append("\n")
# NOTE: we add a variable to distinguish body and ckpt_func
def emit_node(node: Node, body):
maybe_type_annotation = (
"" if node.type is None else f" : {type_repr(node.type)}"
)
if node.op == "placeholder":
assert isinstance(node.target, str)
maybe_default_arg = (
"" if not node.args else f" = {repr(node.args[0])}"
)
free_vars.append(
f"{node.target}{maybe_type_annotation}{maybe_default_arg}"
)
raw_name = node.target.replace("*", "")
if raw_name != repr(node):
body.append(f"{repr(node)} = {raw_name}\n")
return
elif node.op == "call_method":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
f"({_format_args(node.args[1:], node.kwargs)})"
)
return
elif node.op == "call_function":
assert callable(node.target)
# pretty print operators
if (
node.target.__module__ == "_operator"
and node.target.__name__ in magic_methods
):
assert isinstance(node.args, tuple)
body.append(
f"{repr(node)}{maybe_type_annotation} = "
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
)
return
# pretty print inplace operators; required for jit.script to work properly
# not currently supported in normal FX graphs, but generated by torchdynamo
if (
node.target.__module__ == "_operator"
and node.target.__name__ in inplace_methods
):
body.append(
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
)
return
qualified_name = _get_qualified_name(node.target)
global_name = add_global(qualified_name, node.target)
# special case for getattr: node.args could be 2-argument or 3-argument
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
if (
global_name == "getattr"
and isinstance(node.args, tuple)
and isinstance(node.args[1], str)
and node.args[1].isidentifier()
and len(node.args) == 2
):
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
)
return
body.append(
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
)
if node.meta.get("is_wrapped", False):
wrapped_fns.setdefault(global_name)
return
elif node.op == "call_module":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = "
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
)
return
elif node.op == "get_attr":
assert isinstance(node.target, str)
body.append(
f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}"
)
return
elif node.op == "output":
if node.type is not None:
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
body.append(self.generate_output(node.args[0]))
return
raise NotImplementedError(f"node: {node.op} {node.target}")
# Modified for activation checkpointing
ckpt_func = []
# if any node has a list of labels for activation_checkpoint, we
# will use nested type of activation checkpoint codegen
emit_code_with_chunk(
body,
ckpt_func,
nodes,
emit_node,
delete_unused_values,
self.meta_node,
self.meta_graph,
)
if len(body) == 0:
# If the Graph has no non-placeholder nodes, no lines for the body
# have been emitted. To continue to have valid Python code, emit a
# single pass statement
body.append("pass\n")
if len(wrapped_fns) > 0:
wrap_name = add_global("wrap", torch.fx.wrap)
wrap_stmts = "\n".join(
[f'{wrap_name}("{name}")' for name in wrapped_fns]
)
else:
wrap_stmts = ""
if self._body_transformer:
body = self._body_transformer(body)
for name, value in self.additional_globals():
add_global(name, value)
# as we need colossalai.utils.checkpoint, we need to import colossalai
# in forward function
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
prologue = "".join(ckpt_func) + prologue
prologue = prologue
code = "".join(body)
code = "\n".join(" " + line for line in code.split("\n"))
fn_code = f"""
{wrap_stmts}
{prologue}
{code}"""
print(fn_code)
return PythonCode(fn_code, globals_)