ColossalAI/tests/test_shardformer/test_model/test_shard_sam.py

70 lines
2.6 KiB
Python

import pytest
import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, check_grad, run_forward
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
# check forward
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
output_transform_fn, loss_fn)
assert_hf_output_close(org_output, shard_output, ignore_keys=['pred_masks'])
# do backward
org_loss.backward()
shard_loss.backward()
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check grad
sam = org_model
sharded_sam = sharded_model
# check grad
col_layer_for_check = ['mask_decoder.transformer.layers[0].self_attn.q_proj', 'vision_encoder.layers[0].mlp.lin1']
row_layer_for_check = ['mask_decoder.transformer.layers[0].self_attn.out_proj', 'vision_encoder.layers[0].mlp.lin2']
check_grad(sam, sharded_sam, col_layer_for_check, atol=1e-5, rtol=1e-3, dim=0, verbose=False)
check_grad(sam, sharded_sam, row_layer_for_check, atol=1e-3, rtol=1e-3, dim=1, verbose=False)
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
@parameterize('enable_flash_attention', [True, False])
def run_sam_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention):
sub_model_zoo = model_zoo.get_sub_registry('transformers_sam')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism,
enable_flash_attention)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_sam(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_sam_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_sam():
spawn(check_sam, 2)
if __name__ == "__main__":
test_sam()