Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

50 lines
1.7 KiB

import pytest
import torch
from packaging import version
try:
pass
from colossalai.kernel.triton import llama_context_attn_fwd
from tests.test_infer_ops.triton.kernel_utils import torch_context_attention
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_llama_context_attention():
bs = 4
head_num = 8
seq_len = 1024
head_dim = 64
query = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda")
k = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda")
v = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda")
max_input_len = seq_len
b_start = torch.zeros((bs,), device="cuda", dtype=torch.int32)
b_len = torch.zeros((bs,), device="cuda", dtype=torch.int32)
for i in range(bs):
b_start[i] = i * seq_len
b_len[i] = seq_len
o = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda")
llama_context_attn_fwd(query.clone(), k.clone(), v.clone(), o, b_start, b_len, max_input_len)
torch_out = torch_context_attention(query.clone(), k.clone(), v.clone(), bs, seq_len, head_num, head_dim)
assert torch.allclose(
torch_out.cpu(), o.cpu(), rtol=1e-3, atol=1e-3
), "outputs from triton and torch are not matched"
if __name__ == "__main__":
test_llama_context_attention()