ColossalAI/applications/Chat/inference/llama_gptq/loader.py

42 lines
1.2 KiB
Python

import torch
import torch.nn as nn
import transformers
from transformers import LlamaConfig, LlamaForCausalLM
from .model_utils import find_layers
from .quant import make_quant
def load_quant(pretrained: str, checkpoint: str, wbits: int, groupsize: int):
config = LlamaConfig.from_pretrained(pretrained)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant(model, layers, wbits, groupsize)
print(f'Loading model with {wbits} bits...')
if checkpoint.endswith('.safetensors'):
from safetensors.torch import load_file as safe_load
model.load_state_dict(safe_load(checkpoint))
else:
model.load_state_dict(torch.load(checkpoint))
model.seqlen = 2048
print('Done.')
return model