mirror of https://github.com/hpcaitech/ColossalAI
191 lines
8.8 KiB
Python
191 lines
8.8 KiB
Python
import argparse
|
|
import os
|
|
|
|
import loralib as lora
|
|
import torch
|
|
import torch.distributed as dist
|
|
from coati.dataset import DataCollatorForSupervisedDataset, SFTDataset, SupervisedDataset
|
|
from coati.models.base import RewardModel
|
|
from coati.models.bloom import BLOOMLM
|
|
from coati.models.gpt import GPTLM
|
|
from coati.models.llama import LlamaLM
|
|
from coati.models.opt import OPTLM
|
|
from coati.trainer import SFTTrainer
|
|
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
|
from coati.utils import prepare_llama_tokenizer_and_embedding
|
|
from datasets import load_dataset
|
|
from easy_dataset import EasyDataset
|
|
from peft import LoraConfig, PeftModel, TaskType, get_peft_model
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.dataloader import default_collate
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BloomTokenizerFast
|
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.tensor import ColoParameter
|
|
|
|
|
|
def train(args):
|
|
# configure strategy
|
|
if args.strategy == 'naive':
|
|
strategy = NaiveStrategy()
|
|
elif args.strategy == 'ddp':
|
|
strategy = DDPStrategy()
|
|
elif args.strategy == 'colossalai_gemini':
|
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
|
|
elif args.strategy == 'colossalai_zero2':
|
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
|
|
else:
|
|
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
|
|
|
# configure model
|
|
with strategy.model_init_context():
|
|
print('Warning: currently only bloom is tested, gpt2,llama and opt are not tested')
|
|
model = AutoModelForCausalLM.from_pretrained(args.pretrain).to(torch.cuda.current_device())
|
|
#if the args.save_path exists and args.save_path+'/adapter_config.json' exists, we'll load the adapter_config.json
|
|
if os.path.exists(args.save_path) and os.path.exists(args.save_path+'/adapter_config.json') \
|
|
and os.path.exists(args.save_path+'/adapter_model.bin'):
|
|
print("loading from saved peft model ", args.save_path)
|
|
model = PeftModel.from_pretrained(model, args.save_path)
|
|
else:
|
|
#we'll use peft lora library to do the lora
|
|
lora_rank = args.lora_rank if args.lora_rank > 0 else 32
|
|
#config lora with rank of lora_rank
|
|
lora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
|
|
inference_mode=False,
|
|
r=lora_rank,
|
|
lora_alpha=32,
|
|
lora_dropout=0.1)
|
|
model = get_peft_model(model, lora_config)
|
|
model.print_trainable_parameters()
|
|
|
|
# configure tokenizer
|
|
if args.model == 'gpt2':
|
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == 'bloom':
|
|
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == 'opt':
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
|
elif args.model == 'llama':
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.pretrain,
|
|
padding_side="right",
|
|
use_fast=False,
|
|
)
|
|
tokenizer.eos_token = '<\s>'
|
|
else:
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
if args.model == 'llama':
|
|
tokenizer = prepare_llama_tokenizer_and_embedding(tokenizer, model)
|
|
|
|
if args.strategy == 'colossalai_gemini':
|
|
# this is a hack to deal with the resized embedding
|
|
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatiblity
|
|
for name, param in model.named_parameters():
|
|
if not isinstance(param, ColoParameter):
|
|
sub_module_name = '.'.join(name.split('.')[:-1])
|
|
weight_name = name.split('.')[-1]
|
|
sub_module = model.get_submodule(sub_module_name)
|
|
setattr(sub_module, weight_name, ColoParameter(param))
|
|
else:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
# configure optimizer
|
|
if args.strategy.startswith('colossalai'):
|
|
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
|
|
else:
|
|
optim = Adam(model.parameters(), lr=args.lr)
|
|
|
|
logger = get_dist_logger()
|
|
logger.set_level('WARNING')
|
|
|
|
# configure dataset
|
|
law_dataset = EasyDataset(args.dataset, tokenizer=tokenizer, is_group_texts=not args.is_short_text)
|
|
train_dataset = law_dataset
|
|
print(train_dataset)
|
|
eval_dataset = None
|
|
if args.eval_dataset is not None:
|
|
eval_dataset = EasyDataset(args.eval_dataset, tokenizer=tokenizer, is_group_texts=not args.is_short_text)
|
|
data_collator = default_collate
|
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
|
train_sampler = DistributedSampler(train_dataset,
|
|
shuffle=True,
|
|
seed=42,
|
|
drop_last=True,
|
|
rank=dist.get_rank(),
|
|
num_replicas=dist.get_world_size())
|
|
if eval_dataset is not None:
|
|
eval_sampler = DistributedSampler(eval_dataset,
|
|
shuffle=False,
|
|
seed=42,
|
|
drop_last=False,
|
|
rank=dist.get_rank(),
|
|
num_replicas=dist.get_world_size())
|
|
else:
|
|
train_sampler = None
|
|
eval_sampler = None
|
|
|
|
train_dataloader = DataLoader(train_dataset,
|
|
shuffle=(train_sampler is None),
|
|
sampler=train_sampler,
|
|
batch_size=args.batch_size,
|
|
collate_fn=data_collator,
|
|
pin_memory=True)
|
|
if eval_dataset is not None:
|
|
eval_dataloader = DataLoader(eval_dataset,
|
|
shuffle=(eval_sampler is None),
|
|
sampler=eval_sampler,
|
|
batch_size=args.batch_size,
|
|
collate_fn=data_collator,
|
|
pin_memory=True)
|
|
else:
|
|
eval_dataloader = None
|
|
|
|
trainer = SFTTrainer(model=model,
|
|
strategy=strategy,
|
|
optim=optim,
|
|
train_dataloader=train_dataloader,
|
|
eval_dataloader=eval_dataloader,
|
|
batch_size=args.batch_size,
|
|
max_epochs=args.max_epochs,
|
|
accimulation_steps=args.accimulation_steps)
|
|
|
|
trainer.fit(logger=logger, log_interval=args.log_interval)
|
|
|
|
# save model checkpoint after fitting on only rank0
|
|
trainer.save_model(path=args.save_path, only_rank0=True, tokenizer=tokenizer)
|
|
# save optimizer checkpoint on all ranks
|
|
if args.need_optim_ckpt:
|
|
strategy.save_optimizer(trainer.optimizer,
|
|
'rm_optim_checkpoint_%d.pt' % (torch.cuda.current_device()),
|
|
only_rank0=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--strategy',
|
|
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
|
default='naive')
|
|
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom')
|
|
parser.add_argument('--pretrain', type=str, default=None)
|
|
parser.add_argument('--dataset', type=str, default=None)
|
|
parser.add_argument('--eval_dataset', type=str, default=None)
|
|
parser.add_argument('--save_path', type=str, default='output')
|
|
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
|
parser.add_argument('--max_epochs', type=int, default=3)
|
|
parser.add_argument('--batch_size', type=int, default=4)
|
|
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
|
|
parser.add_argument('--log_interval', type=int, default=100, help="how many steps to log")
|
|
parser.add_argument('--lr', type=float, default=5e-6)
|
|
parser.add_argument('--accimulation_steps', type=int, default=8)
|
|
parser.add_argument('--enable_peft_lora', action='store_true', default=False)
|
|
parser.add_argument("--is_short_text", action='store_true', default=False)
|
|
args = parser.parse_args()
|
|
train(args)
|