mirror of https://github.com/hpcaitech/ColossalAI
629 lines
18 KiB
Python
629 lines
18 KiB
Python
import gc
|
|
import time
|
|
from copy import deepcopy
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.testing import assert_close
|
|
|
|
|
|
def get_model_numel(model):
|
|
return sum(p.numel() for p in model.parameters()) / 1024**2
|
|
|
|
|
|
# Step1: dx = w*dy
|
|
def backward_b(loss, x, model):
|
|
torch.autograd.backward(loss, inputs=x, retain_graph=True)
|
|
|
|
|
|
# Step2: dummy dw = x*dy
|
|
def backward_w(loss, model):
|
|
torch.autograd.backward(loss, inputs=list(model.parameters()))
|
|
|
|
|
|
def test_double_dx_dw_split_nsync():
|
|
device = "cuda:0"
|
|
model = nn.Linear(4096, 4096, bias=None).to(device=device)
|
|
# print(f"model numel {get_model_numel(model)}") # 4GB
|
|
x1 = torch.rand(4096, 4096).to(device=device)
|
|
x2 = torch.rand(4096, 4096).to(device=device)
|
|
ref_model = deepcopy(model)
|
|
ref_x1 = x1.clone()
|
|
ref_x2 = x1.clone()
|
|
|
|
# first step
|
|
x1.requires_grad_()
|
|
x2.requires_grad_()
|
|
ref_x1.requires_grad_()
|
|
ref_x2.requires_grad_()
|
|
|
|
# loss for dx_dw bwd
|
|
loss1 = model(x1).sum()
|
|
loss2 = model(x2).sum()
|
|
|
|
# loss for common bwd
|
|
ref_loss1 = ref_model(ref_x1).sum()
|
|
ref_loss2 = ref_model(ref_x2).sum()
|
|
|
|
# dx1
|
|
torch.cuda.synchronize()
|
|
bwd_b_start_time = time.time()
|
|
backward_b(loss1, x1, model)
|
|
bwd_b_end_time = time.time()
|
|
print(f"loss_1 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
|
|
for p in model.parameters():
|
|
assert p.grad is None
|
|
assert x1.grad is not None
|
|
|
|
# dx2
|
|
torch.cuda.synchronize()
|
|
bwd_b_start_time = time.time()
|
|
backward_b(loss2, x2, model)
|
|
bwd_b_end_time = time.time()
|
|
print(f"loss_2 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
|
|
# dw1
|
|
torch.cuda.synchronize()
|
|
bwd_w_start_time = time.time()
|
|
backward_w(loss1, model)
|
|
bwd_w_end_time = time.time()
|
|
print(f"loss_1 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
for p in model.parameters():
|
|
assert p.grad is not None
|
|
|
|
# common bwd 1
|
|
torch.cuda.synchronize()
|
|
comm_bwd_start_time = time.time()
|
|
ref_loss1.backward()
|
|
comm_bwd_end_time = time.time()
|
|
print(f"loss_1 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
|
|
# # assert dx1 & dw1 == bwd 1
|
|
# assert_close(x1.grad, ref_x1.grad)
|
|
# for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
# assert_close(p1, p2)
|
|
# assert_close(p1.grad, p2.grad)
|
|
|
|
# dw2
|
|
torch.cuda.synchronize()
|
|
bwd_w_start_time = time.time()
|
|
backward_w(loss2, model)
|
|
bwd_w_end_time = time.time()
|
|
print(f"loss_2 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
|
|
# common bwd 2
|
|
torch.cuda.synchronize()
|
|
comm_bwd_start_time = time.time()
|
|
ref_loss2.backward()
|
|
comm_bwd_end_time = time.time()
|
|
print(f"loss_2 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
|
|
# # assert dx2 & dw2 == bwd 2
|
|
# assert_close(x2.grad, ref_x2.grad)
|
|
# for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
# print(f"bwd2:\n p1 {p1.grad},\n p2 {p2.grad}\n")
|
|
# assert_close(p1, p2)
|
|
# assert_close(p1.grad, p2.grad)
|
|
|
|
|
|
def test_double_dx_dw_split_sync():
|
|
device = "cuda:0"
|
|
model = nn.Linear(8, 8, bias=None).to(device=device)
|
|
print(f"model size {get_model_numel(model)} ") # 4GB
|
|
x1 = torch.rand(8, 8).to(device=device)
|
|
x2 = torch.rand(8, 8).to(device=device)
|
|
|
|
# x1 = torch.ones(8, 8).to(device=device)
|
|
# x2 = torch.ones(8, 8).to(device=device)
|
|
|
|
ref_model = deepcopy(model)
|
|
ref_x1 = x1.clone()
|
|
ref_x2 = x2.clone()
|
|
|
|
x1.requires_grad_()
|
|
x2.requires_grad_()
|
|
ref_x1.requires_grad_()
|
|
ref_x2.requires_grad_()
|
|
|
|
############
|
|
# step1:
|
|
############
|
|
|
|
# loss1
|
|
loss1 = model(x1).sum()
|
|
|
|
# ref_loss1
|
|
ref_model(ref_x1).sum()
|
|
|
|
# dx1
|
|
backward_b(loss1, x1, model)
|
|
for p in model.parameters():
|
|
assert p.grad is None
|
|
assert x1.grad is not None
|
|
|
|
# dw1
|
|
backward_w(loss1, model)
|
|
for p in model.parameters():
|
|
assert p.grad is not None
|
|
|
|
# common bwd 1
|
|
# ref_loss1.backward()
|
|
|
|
# assert dx1 & dw1 == bwd 1
|
|
assert_close(x1.grad, ref_x1.grad)
|
|
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
assert_close(p1, p2)
|
|
assert_close(p1.grad, p2.grad)
|
|
|
|
############
|
|
# step2:
|
|
############
|
|
|
|
# loss2
|
|
loss2 = model(x2).sum()
|
|
|
|
# ref_loss2
|
|
ref_loss2 = ref_model(ref_x2).sum()
|
|
|
|
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
print(f"bwd2:\n p1 {p1.grad},\n p2 {p2.grad}\n")
|
|
assert_close(p1, p2)
|
|
assert_close(p1.grad, p2.grad)
|
|
|
|
# dx2
|
|
backward_b(loss2, x2, model)
|
|
|
|
# dw2
|
|
backward_w(loss2, model)
|
|
|
|
# common bwd 2
|
|
ref_loss2.backward()
|
|
|
|
# assert dx2 & dw2 == bwd 2
|
|
assert_close(x2.grad, ref_x2.grad)
|
|
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
print(f"bwd2:\n p1 {p1.grad},\n p2 {p2.grad}\n")
|
|
assert_close(p1, p2)
|
|
assert_close(p1.grad, p2.grad)
|
|
|
|
|
|
def deallocate_output_tensor(out):
|
|
"""Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
|
|
|
|
This method should be called right after the output tensor has been
|
|
sent to the next pipeline stage. At this point, the output tensor is
|
|
only useful for its '.grad_fn' field, and not its '.data'.
|
|
"""
|
|
assert isinstance(out, torch.Tensor), "expected Tensor, found %s." % type(out).__name__
|
|
assert out._base is None, "counter-productive to free a view of another tensor."
|
|
out.data = torch.empty(
|
|
(1,),
|
|
device=out.device,
|
|
dtype=out.dtype,
|
|
)
|
|
|
|
|
|
IN_DIM = 8192
|
|
OUT_DIM = 8192
|
|
NUM_LAYER = 3
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([nn.Linear(IN_DIM, OUT_DIM, bias=None) for _ in range(NUM_LAYER)])
|
|
|
|
def forward(self, x):
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, with_qkv=True):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
self.with_qkv = with_qkv
|
|
if self.with_qkv:
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
def forward(self, x):
|
|
B, N, C = x.shape
|
|
if self.with_qkv:
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
else:
|
|
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
q, k, v = qkv, qkv, qkv
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
if self.with_qkv:
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
def mem_dx_dw():
|
|
device = "cuda:0"
|
|
# model = nn.Linear(IN_DIM, OUT_DIM, bias=None).to(device=device)
|
|
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
model = MlpModel().to(device=device)
|
|
print(f"model numel {get_model_numel(model)}") # 4GB
|
|
print(f"After init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
print(f"Before init x1&2&3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
x1 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
x2 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
x3 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
|
|
x1.requires_grad_()
|
|
x2.requires_grad_()
|
|
x3.requires_grad_()
|
|
print(f"After init x1&2&3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
############
|
|
# step1:
|
|
############
|
|
print(f"\nStep1")
|
|
|
|
# loss1
|
|
print(f"Before Fwd x1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
y1 = model(x1)
|
|
print(f"After Fwd x1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
print(f"Before loss1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
loss1 = y1.sum()
|
|
print(f"After loss1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
# dx1
|
|
backward_b(loss1, x1, model)
|
|
|
|
# dw1
|
|
backward_w(loss1, model)
|
|
|
|
deallocate_output_tensor(x1)
|
|
deallocate_output_tensor(y1)
|
|
# del x1
|
|
# del y1
|
|
print(f"After del x1&y1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
# print(f"\n Step1:collect:{gc.collect()}")
|
|
# print(f"object: {gc.get_objects()}")
|
|
# print(f"garbage: {gc.garbage}")
|
|
|
|
############
|
|
# step2:
|
|
############
|
|
print(f"\nStep2")
|
|
|
|
# loss2
|
|
y2 = model(x2)
|
|
loss2 = y2.sum()
|
|
|
|
# dx2
|
|
backward_b(loss2, x2, model)
|
|
|
|
# dw2
|
|
backward_w(loss2, model)
|
|
deallocate_output_tensor(x2)
|
|
deallocate_output_tensor(y2)
|
|
# del x2
|
|
# del y2
|
|
print(f"After del x2&y2: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
print(f"\n Step2:collect:{gc.collect()}")
|
|
# print(f"object: {gc.get_objects()}")
|
|
print(f"garbage: {gc.garbage}")
|
|
|
|
############
|
|
# step3:
|
|
############
|
|
|
|
print(f"\nStep3")
|
|
|
|
# loss3
|
|
y3 = model(x3)
|
|
loss3 = y3.sum()
|
|
|
|
# dx2
|
|
backward_b(loss3, x3, model)
|
|
|
|
# dw2
|
|
backward_w(loss3, model)
|
|
|
|
deallocate_output_tensor(x3)
|
|
deallocate_output_tensor(y3)
|
|
# del x3
|
|
# del y3
|
|
|
|
print(f"After del x3&y3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
print(f"\n Step3:collect:{gc.collect()}")
|
|
# print(f"object: {gc.get_objects()}")
|
|
print(f"garbage: {gc.garbage}")
|
|
|
|
|
|
# del activation
|
|
def activation_dx_dw():
|
|
device = "cuda:0"
|
|
# model = nn.Linear(IN_DIM, OUT_DIM, bias=None).to(device=device)
|
|
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
model = MlpModel().to(device=device)
|
|
x1 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
x2 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
x3 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
|
|
x1.requires_grad_()
|
|
x2.requires_grad_()
|
|
x3.requires_grad_()
|
|
print(f"After init Model, x1,x2,x3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
activations = {}
|
|
|
|
def register_hooks(module):
|
|
def activation_hook(module, input, output):
|
|
activations[f"{module.__class__.__name__}_{id(module)}"] = output.detach()
|
|
|
|
def bwd_hook(module, grad_input, grad_output):
|
|
del activations[f"{module.__class__.__name__}_{id(module)}"]
|
|
|
|
module.register_forward_hook(activation_hook)
|
|
module.register_backward_hook(bwd_hook)
|
|
|
|
model.apply(register_hooks)
|
|
|
|
############
|
|
# step1:
|
|
############
|
|
print(f"\nStep1")
|
|
|
|
# loss1
|
|
loss1 = model(x1).sum()
|
|
|
|
# dx1
|
|
backward_b(loss1, x1, model)
|
|
|
|
# dw1
|
|
backward_w(loss1, model)
|
|
|
|
del loss1, x1
|
|
print(f"After del x1&y1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
############
|
|
# step2:
|
|
############
|
|
print(f"\nStep2")
|
|
|
|
# loss2
|
|
loss2 = model(x2).sum()
|
|
|
|
# dx2
|
|
backward_b(loss2, x2, model)
|
|
|
|
# dw2
|
|
backward_w(loss2, model)
|
|
|
|
# deallocate_output_tensor(x2)
|
|
# deallocate_output_tensor(loss2)
|
|
del x2, loss2
|
|
print(f"After del x2&y2: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
############
|
|
# step3:
|
|
############
|
|
print(f"\nStep3")
|
|
|
|
# loss3
|
|
loss3 = model(x3).sum()
|
|
|
|
# dx2
|
|
backward_b(loss3, x3, model)
|
|
|
|
# dw2
|
|
backward_w(loss3, model)
|
|
|
|
del x3, loss3
|
|
|
|
print(f"After del x3&y3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
|
|
# text dx dw in model chunk
|
|
def model_chunk_dx_dw():
|
|
device = "cuda:0"
|
|
num_layers = 4
|
|
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
model = MlpModel(in_dim=4096, out_dim=4096, num_layers=num_layers).to(device=device)
|
|
x = torch.rand(4096, 4096).to(device=device)
|
|
x.requires_grad_()
|
|
|
|
model_chunk_0 = torch.nn.ModuleList() # for layer 1 & 2
|
|
model_chunk_1 = torch.nn.ModuleList() # for layer 3 & 4
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
if idx < 2:
|
|
model_chunk_0.append(sub_model).cuda()
|
|
else:
|
|
model_chunk_1.append(sub_model).cuda()
|
|
|
|
print(f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
# Step1:chunk 0 fwd
|
|
activation = dict() # layer_id: activation
|
|
out = x
|
|
for i in range(len(model_chunk_0)):
|
|
layer = model_chunk_0[i]
|
|
activation[i] = layer(out)
|
|
print(f"After chunk0 fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
# Step2:chunk 1 fwd
|
|
for i in range(len(model_chunk_1)):
|
|
layer = model_chunk_0[i]
|
|
activation[i + 2] = layer(out)
|
|
print(f"After chunk1 fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
# Step3:chunk 1 bwd b: dx=w*dy & bwd w:dw=x*dy
|
|
# visit layer reversely
|
|
for i in range(len(model_chunk_1) - 1, -1, -1):
|
|
layer = model_chunk_1[i]
|
|
global_layer_idx = i + 2
|
|
prev_global_layer_idx = i + 1 if i + 1 > 0 else None
|
|
i + 3 if i + 3 < 4 else None
|
|
|
|
# bwd b
|
|
if global_layer_idx == num_layers - 1: # last layer in last chunk; calculate loss
|
|
loss = activation[global_layer_idx].sum()
|
|
x = activation[prev_global_layer_idx]
|
|
backward_b(loss, x, layer)
|
|
else:
|
|
loss = activation[global_layer_idx].sum()
|
|
x = activation[prev_global_layer_idx]
|
|
backward_b(loss, x, layer)
|
|
|
|
# bwd w
|
|
backward_w(loss, layer)
|
|
|
|
|
|
def test_dx_dw_linear_benchmark():
|
|
device = "cuda:0"
|
|
model = nn.Linear(4096, 4096, bias=None).to(device=device)
|
|
# print(f"model numel {get_model_numel(model)}") # 4GB
|
|
x1 = torch.rand(4096, 4096).to(device=device)
|
|
# x2 = torch.rand(4096, 4096).to(device=device)
|
|
ref_model = deepcopy(model)
|
|
ref_x1 = x1.clone()
|
|
# ref_x2 = x1.clone()
|
|
|
|
# first step
|
|
x1.requires_grad_()
|
|
# x2.requires_grad_()
|
|
ref_x1.requires_grad_()
|
|
# ref_x2.requires_grad_()
|
|
|
|
# loss for dx_dw bwd
|
|
loss1 = model(x1).sum()
|
|
# loss2 = model(x2).sum()
|
|
|
|
# loss for common bwd
|
|
ref_model(ref_x1).sum()
|
|
# ref_loss2 = ref_model(ref_x2).sum()
|
|
|
|
with torch.profiler.profile(
|
|
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
|
|
# schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=1),
|
|
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
|
f"/home/nvme-share/home/duanjunwen/ColossalAI/tests/test_pipeline/test_schedule"
|
|
),
|
|
record_shapes=True,
|
|
profile_memory=True,
|
|
with_stack=True,
|
|
with_flops=True,
|
|
) as prof:
|
|
# dx1
|
|
torch.cuda.synchronize()
|
|
bwd_b_start_time = time.time()
|
|
backward_b(loss1, x1, model)
|
|
bwd_b_end_time = time.time()
|
|
print(f"loss_1 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
|
|
for p in model.parameters():
|
|
assert p.grad is None
|
|
assert x1.grad is not None
|
|
|
|
# dw1
|
|
torch.cuda.synchronize()
|
|
bwd_w_start_time = time.time()
|
|
backward_w(loss1, model)
|
|
bwd_w_end_time = time.time()
|
|
print(f"loss_1 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
for p in model.parameters():
|
|
assert p.grad is not None
|
|
|
|
# # common bwd 1
|
|
# torch.cuda.synchronize()
|
|
# comm_bwd_start_time = time.time()
|
|
# ref_loss1.backward()
|
|
# comm_bwd_end_time = time.time()
|
|
# print(f"loss_1 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
|
|
|
|
def test_dx_dw_attn_benchmark():
|
|
device = "cuda:0"
|
|
model = Attention(dim=4096).to(device=device)
|
|
# print(f"model numel {get_model_numel(model)}") # 4GB
|
|
x1 = torch.rand(1, 256, 4096).to(device=device)
|
|
# x2 = torch.rand(1, 256, 4096).to(device=device)
|
|
ref_model = deepcopy(model)
|
|
ref_x1 = x1.clone()
|
|
# ref_x2 = x1.clone()
|
|
|
|
# first step
|
|
x1.requires_grad_()
|
|
# x2.requires_grad_()
|
|
ref_x1.requires_grad_()
|
|
# ref_x2.requires_grad_()
|
|
|
|
# loss for dx_dw bwd
|
|
loss1 = model(x1).sum()
|
|
# loss2 = model(x2).sum()
|
|
|
|
# loss for common bwd
|
|
ref_model(ref_x1).sum()
|
|
# ref_loss2 = ref_model(ref_x2).sum()
|
|
|
|
with torch.profiler.profile(
|
|
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
|
|
# schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=1),
|
|
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
|
f"/home/nvme-share/home/duanjunwen/ColossalAI/tests/test_pipeline/test_schedule"
|
|
),
|
|
record_shapes=True,
|
|
profile_memory=True,
|
|
with_stack=True,
|
|
with_flops=True,
|
|
) as prof:
|
|
# dx1
|
|
torch.cuda.synchronize()
|
|
bwd_b_start_time = time.time()
|
|
backward_b(loss1, x1, model)
|
|
bwd_b_end_time = time.time()
|
|
print(f"loss_1 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
|
|
for p in model.parameters():
|
|
assert p.grad is None
|
|
assert x1.grad is not None
|
|
|
|
# dw1
|
|
torch.cuda.synchronize()
|
|
bwd_w_start_time = time.time()
|
|
backward_w(loss1, model)
|
|
bwd_w_end_time = time.time()
|
|
print(f"loss_1 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
for p in model.parameters():
|
|
assert p.grad is not None
|
|
|
|
# # common bwd 1
|
|
# torch.cuda.synchronize()
|
|
# comm_bwd_start_time = time.time()
|
|
# ref_loss1.backward()
|
|
# comm_bwd_end_time = time.time()
|
|
# print(f"loss_1 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# test_dx_dw_split()
|
|
# test_double_dx_dw_split_nsync()
|
|
# test_double_dx_dw_split_sync()
|
|
# mem_dx_dw()
|
|
# activation_dx_dw()
|
|
# test_dx_dw_linear_benchmark()
|
|
test_dx_dw_attn_benchmark()
|