mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.6 KiB
97 lines
3.6 KiB
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register single-sentence Whisper |
|
# =============================== |
|
|
|
|
|
# define data gen function |
|
def data_gen(): |
|
# Generated from following code snippet |
|
# |
|
# from transformers import AutoFeatureExtractor, WhisperModel |
|
# from datasets import load_dataset |
|
|
|
# model = WhisperModel.from_pretrained("openai/whisper-base") |
|
# feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") |
|
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
# inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") |
|
# input_features = inputs.input_features |
|
# decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id |
|
|
|
input_features = torch.rand(1, 80, 3000) |
|
decoder_input_ids = torch.tensor([[1, 1]]) * 50258 |
|
return dict(input_features=input_features, decoder_input_ids=decoder_input_ids) |
|
|
|
|
|
def data_gen_for_conditional_generation(): |
|
# labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
# Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` |
|
# or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is |
|
# only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
data = data_gen() |
|
data["labels"] = torch.tensor([[0, 1]], dtype=torch.int64) |
|
return data |
|
|
|
|
|
def data_gen_for_audio_classification(): |
|
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
# Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
# config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
# `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
# `WhisperForAudioClassification` does not need `decoder_input_ids` |
|
data = data_gen() |
|
data.pop("decoder_input_ids") |
|
data["labels"] = torch.tensor([1], dtype=torch.int64) |
|
return data |
|
|
|
|
|
# define output transform function |
|
output_transform_fn = lambda x: x |
|
|
|
# define loss funciton |
|
loss_fn = lambda x: torch.nn.functional.mse_loss(x["last_hidden_state"], torch.ones_like(x["last_hidden_state"])) |
|
loss_fn_attr = lambda x: x["loss"] |
|
|
|
config = transformers.WhisperConfig( |
|
classifier_proj_size=256, |
|
d_model=256, |
|
decoder_attention_heads=4, |
|
decoder_ffn_dim=1536, |
|
decoder_layers=2, |
|
encoder_attention_heads=4, |
|
encoder_ffn_dim=1536, |
|
encoder_layers=2, |
|
vocab_size=51866, |
|
) |
|
|
|
# register the Whisper variants |
|
model_zoo.register( |
|
name="transformers_whisper", |
|
model_fn=lambda: transformers.WhisperModel(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
|
|
model_zoo.register( |
|
name="transformers_whisper_for_conditional_generation", |
|
model_fn=lambda: transformers.WhisperForConditionalGeneration(config), |
|
data_gen_fn=data_gen_for_conditional_generation, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_attr, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
|
|
model_zoo.register( |
|
name="transformers_whisper_for_audio_classification", |
|
model_fn=lambda: transformers.WhisperForAudioClassification(config), |
|
data_gen_fn=data_gen_for_audio_classification, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_attr, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|