Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

98 lines
3.7 KiB

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence T5
# ===============================
# define data gen function
def data_gen_for_encoder_only():
# Generated from following code snippet
#
# from transformers import T5Config, T5Tokenizer
# config = T5Config(decoder_start_token_id=0)
# tokenizer = T5Tokenizer.from_pretrained("t5-small")
# input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids
input_ids = torch.Tensor([[13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 1, 12, 1627, 5, 1, 12]]).long()
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]).long()
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_conditional_generation():
# labels is generated with the following code
#
# labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids
data = data_gen_for_encoder_only()
labels = torch.Tensor([[644, 4598, 229, 19250, 5, 1, 644, 4598, 229, 19250, 5, 1, 229, 19250, 5, 1]]).long()
data["labels"] = labels
return data
def data_gen_for_t5_model():
# decoder_inputs_ids is obtained with the following code
# decoder_input_ids = model._shift_right(input_ids)
data = data_gen_for_encoder_only()
decoder_input_ids = torch.Tensor([[0, 13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 5, 19, 1627, 5, 5]]).long()
data["decoder_input_ids"] = decoder_input_ids
return data
def data_gen_for_token_classification():
# token classification data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen_for_encoder_only()
data["labels"] = torch.tensor([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
return data
# output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_t5_model = lambda x: x["last_hidden_state"].mean()
loss_fn_for_encoder_only = lambda x: x["last_hidden_state"].mean()
loss_fn_for_conditional_generation = lambda x: x["loss"]
loss_fn_for_token_classification = lambda x: x["loss"]
# define model config
config = transformers.T5Config(d_model=128, num_layers=2, dropout_rate=0, decoder_start_token_id=0)
# register the following models
# transformers.T5Model,
# transformers.T5ForConditionalGeneration,
# transformers.T5EncoderModel,
model_zoo.register(
name="transformers_t5",
model_fn=lambda: transformers.T5Model(config),
data_gen_fn=data_gen_for_t5_model,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_t5_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_t5_for_conditional_generation",
model_fn=lambda: transformers.T5ForConditionalGeneration(config),
data_gen_fn=data_gen_for_conditional_generation,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_conditional_generation,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_t5_encoder_model",
model_fn=lambda: transformers.T5EncoderModel(config),
data_gen_fn=data_gen_for_encoder_only,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_encoder_only,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_t5_for_token_classification",
model_fn=lambda: transformers.T5ForTokenClassification(config),
data_gen_fn=data_gen_for_token_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_token_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)