mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
3.7 KiB
98 lines
3.7 KiB
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register single-sentence T5 |
|
# =============================== |
|
|
|
|
|
# define data gen function |
|
def data_gen_for_encoder_only(): |
|
# Generated from following code snippet |
|
# |
|
# from transformers import T5Config, T5Tokenizer |
|
# config = T5Config(decoder_start_token_id=0) |
|
# tokenizer = T5Tokenizer.from_pretrained("t5-small") |
|
# input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids |
|
input_ids = torch.Tensor([[13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 1, 12, 1627, 5, 1, 12]]).long() |
|
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]).long() |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_conditional_generation(): |
|
# labels is generated with the following code |
|
# |
|
# labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids |
|
data = data_gen_for_encoder_only() |
|
labels = torch.Tensor([[644, 4598, 229, 19250, 5, 1, 644, 4598, 229, 19250, 5, 1, 229, 19250, 5, 1]]).long() |
|
data["labels"] = labels |
|
return data |
|
|
|
|
|
def data_gen_for_t5_model(): |
|
# decoder_inputs_ids is obtained with the following code |
|
# decoder_input_ids = model._shift_right(input_ids) |
|
data = data_gen_for_encoder_only() |
|
decoder_input_ids = torch.Tensor([[0, 13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 5, 19, 1627, 5, 5]]).long() |
|
data["decoder_input_ids"] = decoder_input_ids |
|
return data |
|
|
|
|
|
def data_gen_for_token_classification(): |
|
# token classification data gen |
|
# `labels` is the type not the token id for token classification, 0 or 1 |
|
data = data_gen_for_encoder_only() |
|
data["labels"] = torch.tensor([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64) |
|
return data |
|
|
|
|
|
# output transform function |
|
output_transform_fn = lambda x: x |
|
|
|
# define loss function |
|
loss_fn_for_t5_model = lambda x: x["last_hidden_state"].mean() |
|
loss_fn_for_encoder_only = lambda x: x["last_hidden_state"].mean() |
|
loss_fn_for_conditional_generation = lambda x: x["loss"] |
|
loss_fn_for_token_classification = lambda x: x["loss"] |
|
|
|
# define model config |
|
config = transformers.T5Config(d_model=128, num_layers=2, dropout_rate=0, decoder_start_token_id=0) |
|
|
|
# register the following models |
|
# transformers.T5Model, |
|
# transformers.T5ForConditionalGeneration, |
|
# transformers.T5EncoderModel, |
|
model_zoo.register( |
|
name="transformers_t5", |
|
model_fn=lambda: transformers.T5Model(config), |
|
data_gen_fn=data_gen_for_t5_model, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_t5_model, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_t5_for_conditional_generation", |
|
model_fn=lambda: transformers.T5ForConditionalGeneration(config), |
|
data_gen_fn=data_gen_for_conditional_generation, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_conditional_generation, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_t5_encoder_model", |
|
model_fn=lambda: transformers.T5EncoderModel(config), |
|
data_gen_fn=data_gen_for_encoder_only, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_encoder_only, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_t5_for_token_classification", |
|
model_fn=lambda: transformers.T5ForTokenClassification(config), |
|
data_gen_fn=data_gen_for_token_classification, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_token_classification, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|