Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

79 lines
2.4 KiB

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
try:
from transformers import CohereConfig
HAS_COMMAND = True
except ImportError:
HAS_COMMAND = False
if HAS_COMMAND:
# ===============================
# Register Command-R
# ===============================
def data_gen():
input_ids = torch.Tensor(
[
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
]
).long()
attention_mask = torch.Tensor(
[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
]
).long()
return dict(input_ids=input_ids, attention_mask=attention_mask)
# label is needed for causal lm
def data_gen_for_causal_lm():
data = data_gen()
labels = data["input_ids"].clone()
data["labels"] = labels
return data
# transform the output to a dict
output_transform_fn = lambda x: x
# function to get the loss
loss_fn = lambda output: output["last_hidden_state"].mean()
loss_fn_for_causal_lm = lambda output: output["loss"]
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
config = CohereConfig(
num_hidden_layers=8,
hidden_size=32,
intermediate_size=64,
num_attention_heads=4,
max_position_embeddings=128,
)
if hasattr(config, "pad_token_id"):
config.pad_token_id = config.eos_token_id
# register the following models
# transformers.CohereModel,
# transformers.CohereForCausalLM,
model_zoo.register(
name="transformers_command",
model_fn=lambda: transformers.CohereModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_command_for_causal_lm",
model_fn=lambda: transformers.CohereForCausalLM(config),
data_gen_fn=data_gen_for_causal_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_causal_lm,
model_attribute=ModelAttribute(has_control_flow=True),
)