mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
2.3 KiB
84 lines
2.3 KiB
import torch |
|
from torch.nn import init |
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# ================================ |
|
# Register single-sentence ChatGLM |
|
# ================================ |
|
|
|
|
|
def data_gen(): |
|
input_ids = torch.tensor([[5941, 15, 2670, 3543, 632, 2075, 632, 2075]], dtype=torch.int64) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]]) |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_conditional_generation(): |
|
# token classification data gen |
|
# `labels` is the type not the token id for token classification, 0 or 1 |
|
data = data_gen() |
|
labels = data["input_ids"].clone() |
|
data["labels"] = labels |
|
return data |
|
|
|
|
|
# define output transform function |
|
output_transform_fn = lambda x: x |
|
|
|
# define loss function |
|
loss_fn_for_chatglm_model = lambda x: torch.nn.functional.mse_loss( |
|
x["last_hidden_state"], torch.ones_like(x["last_hidden_state"]) |
|
) |
|
loss_fn = lambda x: x["loss"] |
|
|
|
|
|
infer_config = AutoConfig.from_pretrained( |
|
"THUDM/chatglm2-6b", |
|
trust_remote_code=True, |
|
num_layers=2, |
|
padded_vocab_size=65024, |
|
hidden_size=128, |
|
num_attention_heads=8, |
|
multi_query_attention=True, |
|
multi_query_group_num=2, |
|
kv_channels=16, |
|
rmsnorm=True, |
|
original_rope=True, |
|
use_cache=True, |
|
torch_dtype=torch.float32, |
|
) |
|
|
|
|
|
def init_chatglm(): |
|
config = AutoConfig.from_pretrained( |
|
"THUDM/chatglm2-6b", |
|
trust_remote_code=True, |
|
num_layers=2, |
|
padded_vocab_size=65024, |
|
hidden_size=64, |
|
ffn_hidden_size=214, |
|
num_attention_heads=8, |
|
kv_channels=16, |
|
rmsnorm=True, |
|
original_rope=True, |
|
use_cache=True, |
|
multi_query_attention=False, |
|
torch_dtype=torch.float32, |
|
) |
|
model = AutoModelForCausalLM.from_config(config, empty_init=False, trust_remote_code=True) |
|
for m in model.modules(): |
|
if m.__class__.__name__ == "RMSNorm": |
|
init.ones_(m.weight) |
|
return model |
|
|
|
|
|
model_zoo.register( |
|
name="transformers_chatglm_for_conditional_generation", |
|
model_fn=init_chatglm, |
|
data_gen_fn=data_gen_for_conditional_generation, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|