mirror of https://github.com/hpcaitech/ColossalAI
406 lines
17 KiB
Python
406 lines
17 KiB
Python
""" PyTorch ChatGLM model. """
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch.nn import CrossEntropyLoss
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
from transformers.utils import logging
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.shardformer import ShardConfig
|
|
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
|
|
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration, ChatGLMModel
|
|
|
|
|
|
def get_flash_core_attention_forward():
|
|
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
|
|
|
|
from .chatglm2_6b.modeling_chatglm import CoreAttention
|
|
|
|
def forward(self: CoreAttention, query_layer, key_layer, value_layer, attention_mask):
|
|
pytorch_major_version = int(torch.__version__.split(".")[0])
|
|
if pytorch_major_version >= 2:
|
|
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
|
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
|
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
|
query_layer, key_layer, value_layer, is_causal=True
|
|
)
|
|
else:
|
|
if attention_mask is not None:
|
|
attention_mask = ~attention_mask
|
|
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
|
query_layer, key_layer, value_layer, attention_mask
|
|
)
|
|
context_layer = context_layer.permute(2, 0, 1, 3)
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
|
context_layer = context_layer.reshape(*new_context_layer_shape)
|
|
else:
|
|
# Raw attention scores
|
|
query_layer = query_layer.permute(1, 0, 2, 3).contiguous()
|
|
key_layer = key_layer.permute(1, 0, 2, 3).contiguous()
|
|
value_layer = value_layer.permute(1, 0, 2, 3).contiguous()
|
|
|
|
scale = 1.0 / self.norm_factor
|
|
if self.coeff is not None:
|
|
scale = scale * self.coeff
|
|
|
|
flash_attention_mask = None
|
|
attn_mask_type = None
|
|
if attention_mask is None:
|
|
attn_mask_type = AttnMaskType.causal
|
|
else:
|
|
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous()
|
|
if not torch.all(flash_attention_mask):
|
|
attn_mask_type = AttnMaskType.paddedcausal
|
|
|
|
attention = ColoAttention(
|
|
embed_dim=self.hidden_size_per_partition,
|
|
num_heads=self.num_attention_heads_per_partition,
|
|
dropout=self.attention_dropout.p,
|
|
scale=scale,
|
|
)
|
|
context_layer = attention(
|
|
query_layer, key_layer, value_layer, attn_mask=flash_attention_mask, attn_mask_type=attn_mask_type
|
|
)
|
|
|
|
context_layer = context_layer.permute(1, 0, -1).contiguous()
|
|
|
|
return context_layer
|
|
|
|
return forward
|
|
|
|
|
|
def get_jit_fused_glm_block_forward():
|
|
from .chatglm2_6b.modeling_chatglm import GLMBlock
|
|
|
|
def forward(
|
|
self: GLMBlock,
|
|
hidden_states,
|
|
attention_mask,
|
|
rotary_pos_emb,
|
|
kv_cache=None,
|
|
use_cache=True,
|
|
):
|
|
# hidden_states: [s, b, h]
|
|
# Layer norm at the beginning of the transformer layer.
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
# Self attention.
|
|
attention_output, kv_cache = self.self_attention(
|
|
layernorm_output,
|
|
attention_mask,
|
|
rotary_pos_emb,
|
|
kv_cache=kv_cache,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
# Residual connection.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = hidden_states
|
|
|
|
layernorm_input = self.dropout_add(attention_output, residual, self.hidden_dropout, self.training)
|
|
|
|
# Layer norm post the self attention.
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
|
|
|
# MLP.
|
|
mlp_output = self.mlp(layernorm_output)
|
|
|
|
# Second residual connection.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = layernorm_input
|
|
|
|
output = self.dropout_add(mlp_output, residual, self.hidden_dropout, self.training)
|
|
|
|
return output, kv_cache
|
|
|
|
return forward
|
|
|
|
|
|
class ChatGLMPipelineForwards:
|
|
"""
|
|
This class serves as a micro library for ChatGLM model forwards under pipeline parallelism.
|
|
"""
|
|
|
|
@staticmethod
|
|
def chatglm_model_forward(
|
|
self: ChatGLMModel,
|
|
input_ids,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.BoolTensor] = None,
|
|
full_attention_mask: Optional[torch.BoolTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
logger = logging.get_logger(__name__)
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if past_key_values:
|
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.")
|
|
past_key_values = None
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
if use_cache:
|
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
|
use_cache = False
|
|
if stage_manager.is_first_stage():
|
|
batch_size, seq_length = input_ids.shape
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embedding(input_ids)
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
seq_length, batch_size = hidden_states.shape[:2]
|
|
if self.pre_seq_len is not None:
|
|
if past_key_values is None:
|
|
past_key_values = self.get_prompt(
|
|
batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype
|
|
)
|
|
if attention_mask is not None:
|
|
attention_mask = torch.cat(
|
|
[attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1
|
|
)
|
|
if full_attention_mask is None:
|
|
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
|
# Rotary positional embeddings
|
|
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
|
if position_ids is not None:
|
|
rotary_pos_emb = rotary_pos_emb[position_ids]
|
|
else:
|
|
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
|
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
|
if not past_key_values:
|
|
past_key_values = [None for _ in range(self.num_layers)]
|
|
presents = () if use_cache else None
|
|
if self.encoder.gradient_checkpointing and self.encoder.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
all_self_attentions = None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
|
|
|
if shard_config.enable_sequence_parallelism:
|
|
hidden_states = split_forward_gather_backward(
|
|
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
|
|
)
|
|
for idx in range(start_idx, end_idx):
|
|
layer = self.encoder._get_layer(idx)
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
if self.encoder.gradient_checkpointing and self.encoder.training:
|
|
layer_ret = torch.utils.checkpoint.checkpoint(
|
|
layer, hidden_states, attention_mask, rotary_pos_emb, past_key_values[idx], use_cache
|
|
)
|
|
else:
|
|
layer_ret = layer(
|
|
hidden_states,
|
|
full_attention_mask,
|
|
rotary_pos_emb,
|
|
kv_cache=past_key_values[idx],
|
|
use_cache=use_cache,
|
|
)
|
|
hidden_states, kv_cache = layer_ret
|
|
if use_cache:
|
|
presents = presents + (kv_cache,)
|
|
|
|
if shard_config.enable_sequence_parallelism:
|
|
hidden_states = gather_forward_split_backward(
|
|
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
|
|
)
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
if stage_manager.is_last_stage():
|
|
# final layer_norm
|
|
if self.encoder.post_layer_norm:
|
|
hidden_states = self.encoder.final_layernorm(hidden_states)
|
|
if not return_dict:
|
|
return tuple(
|
|
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None
|
|
)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=presents,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
else:
|
|
return {"hidden_states": hidden_states}
|
|
|
|
@staticmethod
|
|
def chatglm_for_conditional_generation_forward(
|
|
self: ChatGLMForConditionalGeneration,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
return_last_logit: Optional[bool] = False,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
logging.get_logger(__name__)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
transformer_outputs = ChatGLMPipelineForwards.chatglm_model_forward(
|
|
self.transformer,
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
stage_manager=stage_manager,
|
|
hidden_states=hidden_states,
|
|
stage_index=stage_index,
|
|
shard_config=shard_config,
|
|
)
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = transformer_outputs[0]
|
|
if return_last_logit:
|
|
hidden_states = hidden_states[-1:]
|
|
lm_logits = self.transformer.output_layer(hidden_states)
|
|
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
|
loss = None
|
|
if labels is not None:
|
|
lm_logits = lm_logits.to(torch.float32)
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
lm_logits = lm_logits.to(hidden_states.dtype)
|
|
loss = loss.to(hidden_states.dtype)
|
|
if not return_dict:
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
else:
|
|
return transformer_outputs
|
|
|
|
|
|
def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.BoolTensor] = None,
|
|
full_attention_mask: Optional[torch.BoolTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
):
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
batch_size, seq_length = input_ids.shape
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embedding(input_ids)
|
|
|
|
if self.pre_seq_len is not None:
|
|
if past_key_values is None:
|
|
past_key_values = self.get_prompt(
|
|
batch_size=batch_size,
|
|
device=input_ids.device,
|
|
dtype=inputs_embeds.dtype,
|
|
)
|
|
if attention_mask is not None:
|
|
attention_mask = torch.cat(
|
|
[
|
|
attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
|
attention_mask,
|
|
],
|
|
dim=-1,
|
|
)
|
|
|
|
if full_attention_mask is None:
|
|
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
|
|
|
# Rotary positional embeddings
|
|
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
|
if position_ids is not None:
|
|
rotary_pos_emb = rotary_pos_emb[position_ids]
|
|
else:
|
|
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
|
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
|
|
|
# Run encoder.
|
|
# [seq_len, batch_size, hidden_size] -> [seq_len/TP_size, batch_size, hidden_size]
|
|
inputs_embeds = split_forward_gather_backward(
|
|
inputs_embeds, dim=0, process_group=shard_config.tensor_parallel_process_group
|
|
)
|
|
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
|
inputs_embeds,
|
|
full_attention_mask,
|
|
rotary_pos_emb=rotary_pos_emb,
|
|
kv_caches=past_key_values,
|
|
use_cache=use_cache,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
|
|
hidden_states = gather_forward_split_backward(
|
|
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
|
|
)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [
|
|
hidden_states,
|
|
presents,
|
|
all_hidden_states,
|
|
all_self_attentions,
|
|
]
|
|
if v is not None
|
|
)
|
|
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=presents,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
return forward
|